Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Klapper, M.

  • Google
  • 1
  • 14
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2003Functional polymers as nanoscopic building blocks45citations

Places of action

Chart of shared publication
Müllen, K.
1 / 37 shared
Wu, J.
1 / 56 shared
Hernandez-Lopez, J. L.
1 / 1 shared
Weil, T.
1 / 1 shared
Majoral, J. P.
1 / 2 shared
Glasser, G.
1 / 2 shared
Leclaire, J.
1 / 1 shared
Chang, W. S.
1 / 2 shared
Kreiter, M.
1 / 1 shared
Grebel-Koehler, D.
1 / 1 shared
Bauer, R. E.
1 / 1 shared
Zhu, T.
1 / 15 shared
Knoll, W.
1 / 9 shared
Mittler, S.
1 / 1 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Müllen, K.
  • Wu, J.
  • Hernandez-Lopez, J. L.
  • Weil, T.
  • Majoral, J. P.
  • Glasser, G.
  • Leclaire, J.
  • Chang, W. S.
  • Kreiter, M.
  • Grebel-Koehler, D.
  • Bauer, R. E.
  • Zhu, T.
  • Knoll, W.
  • Mittler, S.
OrganizationsLocationPeople

article

Functional polymers as nanoscopic building blocks

  • Müllen, K.
  • Wu, J.
  • Hernandez-Lopez, J. L.
  • Weil, T.
  • Majoral, J. P.
  • Glasser, G.
  • Leclaire, J.
  • Chang, W. S.
  • Kreiter, M.
  • Klapper, M.
  • Grebel-Koehler, D.
  • Bauer, R. E.
  • Zhu, T.
  • Knoll, W.
  • Mittler, S.
Abstract

<p>Polyphenylene dendrimers are introduced as polymeric building blocks-with a strictly monodisperse particle size distribution within the nanometer range-for the construction of nanostructured materials and devices. The possibility for the introduction of different functionalities in the core, the scaffold or the periphery of the dendrimers offer their use as interesting modules for photonic, electronic or bioactive structures and supramolecular functional assemblies. Thus, dendrimers complement the available set of nanoscopic building blocks made from metals, e.g., Au nanoclusters and semiconductors, e.g., luminescent quantum dots. In a first set of experiments, we describe the fabrication of multilayer architectures using dendrimers with chargeable groups at the surface. This way, the polyelectrolyte deposition technique can be applied for the construction of hybrid layered assemblies with a control of the internal supramolecular structure at the nanometer level. Surface plasmon field-enhanced fluorescence spectroscopy is used to monitor the luminescent properties of dendrimers with a phthalocyanine core integrated into such a multilayer assembly. AFM and SEM micrographs demonstrate the use of surface-functionalized dendrimers (exposing sulfur groups at the periphery) in combination with Au nanoparticles for the controlled assembly of hybrid aggregates as nanoscopic functional devices.</p>

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • surface
  • polymer
  • scanning electron microscopy
  • experiment
  • atomic force microscopy
  • semiconductor
  • layered
  • quantum dot
  • dendrimer
  • fluorescence spectroscopy