Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mellema, J.

  • Google
  • 4
  • 9
  • 80

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2003Local Structure and Elasticity of Soft Gelatin Gels Studied with Atomic Force Microscopy32citations
  • 2001High frequency elastic modulus of hairy particle dispersions in relation to their microstructure15citations
  • 2001Linear viscoelastic behavior of enzymatically modified guar gum solutions: structure, relaxations and gel formation14citations
  • 2000Elastic Modulus at High Frequency of Polymerically Stabilized Suspensions19citations

Places of action

Chart of shared publication
Duits, Michael
4 / 12 shared
Uricanu, V. I.
1 / 2 shared
Nelissen, R. M. F.
1 / 1 shared
Bennink, Martin
1 / 1 shared
Nommensen, P. A.
2 / 2 shared
Ende, Henricus T. M. Van Den
2 / 3 shared
Wientjes, R. H. W.
1 / 1 shared
Bakker, Jimmy
1 / 1 shared
Jongschaap, R. J. J.
1 / 1 shared
Chart of publication period
2003
2001
2000

Co-Authors (by relevance)

  • Duits, Michael
  • Uricanu, V. I.
  • Nelissen, R. M. F.
  • Bennink, Martin
  • Nommensen, P. A.
  • Ende, Henricus T. M. Van Den
  • Wientjes, R. H. W.
  • Bakker, Jimmy
  • Jongschaap, R. J. J.
OrganizationsLocationPeople

article

High frequency elastic modulus of hairy particle dispersions in relation to their microstructure

  • Nommensen, P. A.
  • Ende, Henricus T. M. Van Den
  • Mellema, J.
  • Duits, Michael
Abstract

The high-frequency elasticity G′∞ of polymerically stabilized colloidal dispersions is the result of a complex interplay between the particle configuration, pair potential and hydrodynamics. In the analysis of this relation, frequent use is made of simplifications in describing the structure and/or hydrodynamics. Especially in the case of polymerically stabilized particles such approximations may give erroneous results. We demonstrate this for particles where the polymer layer thickness is comparable to the radius of the core. For our particles the repulsive potential is rather steep, whereas the permeability length is small. Hydrodynamics was found to be unimportant at very high particle concentrations, but at lower concentrations it is not negligible. Most crucial in the modeling of G′∞ is the particle configuration. Existing approaches in which inconsistencies are introduced between the pair potential and the locations where it is probed, fail to give even semi-quantitative predictions. This problem can be avoided by performing Monte Carlo simulations to obtain the particle configuration (with the pair potential as input). Even so, predictions for G′∞ may be obscured at high concentrations. Our simulations showed that above a certain concentration, crystallization occurred but also disordered states were found, depending on the initial configuration. A resemblance was found with the freezing transition for hard spheres. For our particle systems it turned out that the calculated elastic moduli for disordered structures and for crystals differ only modestly.

Topics
  • impedance spectroscopy
  • dispersion
  • polymer
  • simulation
  • elasticity
  • permeability
  • crystallization