People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bentzen, Janet Jonna
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2019Structural Characterization of Membrane-Electrode-Assemblies in High Temperature Polymer Electrolyte Membrane Fuel Cellscitations
- 2018Citrate- and glycerol triesters as novel dual-functional dispersants and plasticisers for ceramic processingcitations
- 2017Enhanced densification of thin tape cast Ceria-Gadolinium Oxide (CGO) layers by rheological optimization of slurriescitations
- 2015Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cellscitations
- 2014Removal of NO x with Porous Cell Stacks with La 0.85 Sr0.15Co x Mn 1-x O 3+δ -Ce 0.9 Gd 0.1 O 1.95 Electrodes Infiltrated with BaOcitations
- 2014Removal of NOx with Porous Cell Stacks with La0.85Sr0.15CoxMn1-xO3+δ-Ce0.9Gd0.1O1.95 Electrodes Infiltrated with BaOcitations
- 2013High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stackscitations
- 2013High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stackscitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Fabrication and Characterization of multi-layer ceramics for electrochemical flue gas purificationcitations
- 2013Fabrication and Characterization of multi-layer ceramics for electrochemical flue gas purificationcitations
- 2013Low cost transportable device for transference of atmosphere sensitive materials from glove box to SEM
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Microstructural evolution of nanosized Ce 0.8 Gd 0.2 O 1.9 /Ni infiltrate in a Zr 0.84 Y 0.16 O 1.92 -Sr 0.94 Ti 0.9 Nb 0.1 O 3-δ based SOFC anode under electrochemical evaluation
- 2012Microstructural evolution of nanosized Ce0.8Gd0.2O1.9/Ni infiltrate in a Zr0.84Y0.16O1.92-Sr0.94Ti0.9Nb0.1O3-δ based SOFC anode under electrochemical evaluation
- 2009Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodescitations
- 2003Thixoforming of an automotive part in A390 hypereutectic Al-Si alloycitations
Places of action
Organizations | Location | People |
---|
article
Thixoforming of an automotive part in A390 hypereutectic Al-Si alloy
Abstract
Hypereutectic aluminium–silicon alloys offer the possibility of an in situ natural composite (the silicon acting as the reinforcing phase) with properties that make them attractive for a number of automotive applications. However, conventional casting techniques result in excessive growth of the silicon particles in the melt, which adversely affect the mechanical properties. Thixoforming allows hypereutectic Al–Si alloys containing 40–50% fraction liquid to be shaped into complex near net shape components, whilst keeping the silicon particle size quite fine. This paper describes the development of a series of hypereutectic alloys based on the A390 composition (17%Si, 5%Cu, 0.5%Mg), their thixoforming, their resulting microstructures and mechanical properties. Finally the thixoforming of an automotive component using an A390 alloy is also described.