People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fonseca, Jose
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2016An Image Generator Platform to Improve Cell Tracking Algorithmscitations
- 2014Hydrogen induced stress cracking on superduplex stainless steel under cathodic protectioncitations
- 2013Validation methodology of crack growth measurement using potential drop method on SENB specimens
- 2010Displacement Estimation of a RC Beam Test based on TSS algorithm
- 2009Deformation of isotropic and anisotropic liquid droplets dispersed in a cellulose liquid crystalline derivativecitations
- 2002Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique: the LIBSGRAIN projectcitations
Places of action
Organizations | Location | People |
---|
article
Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique: the LIBSGRAIN project
Abstract
In this paper are presented the results of the feasibility study for the application of non-destructive spectroscopic methods to the diagnostics of steel pipes in industrial environment. The activities here described are part of the LIBSGRAIN project, funded by the European Commission; the main aim of the project is correlating the probability of failure of industrial plants components with the results of space-resolved elemental analysis carried out with laser-induced breakdown spectroscopy (LIBS) technique. Several simulations have been made in order to check the detectability of dangerous deterioration of steel pipes and to optimize some experimental parameters as the laser focal spot size and the traverse scanning step of the laser head. A design of a laser head which can operate in a real plant and can overcome the problems related to high temperature and vibration is proposed. The feasibility of remote controlled measurements at high temperature has been demonstrated in laboratory tests. The accuracy of LIBS measurements on steel target has been tested on NIST certified steel samples. (C) 2002 Elsevier Science B.V. All rights reserved.