People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baas, Jacobus
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2021Controlling phase separation in thermoelectric Pb1-xGexTe to minimize thermal conductivitycitations
- 2020Structural and multiferroic properties in double-layer Aurivillius phase Pb0.4Bi2.1La0.5Nb1.7Mn0.3O9 prepared by molten salt methodcitations
- 2019Electronic mobility and crystal structures of 2,5-dimethylanilinium triiodide and tin-based organic-inorganic hybrid compoundscitations
- 2018Out-of-plane polarization in a layered manganese chloride hybridcitations
- 2016Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybridscitations
- 2014Self-Assembly of Ferromagnetic Organic–Inorganic Perovskite-Like Filmscitations
- 2014Self-Assembly of Ferromagnetic Organic–Inorganic Perovskite-Like Filmscitations
- 2013Excess manganese as the origin of the low-temperature anomaly in NiMnSbcitations
- 2007Crystal growth, structure, and electronic band structure of tetracene-TCNQcitations
- 2003Identification of polymorphs of pentacenecitations
Places of action
Organizations | Location | People |
---|
article
Identification of polymorphs of pentacene
Abstract
<p>Pentacene crystallizes in a layered structure with a herringbone arrangement within the layers. The electronic properties depend strongly on the stacking of the molecules within the layers [J. Phys. Chem. B. 106 (2002) 8288]. We have synthesized four different polymorphs of pentacene, identified by their layer periodicity, d(001): 14.1, 14.4, 15.0 and 15.4 Angstrom. Single crystals commonly adopt the 14.1 Angstrom structure, whereas all four polymorphs can be synthesized in thin film form, depending on growth conditions. We have identified part of the unit cell parameters of these polymorphs by X-ray and electron diffraction (ED). The 15.0 and 15.4 X polymorphs transform at elevated temperature to the 14.1 and 14.4 Angstrom polymorphs, respectively. Using SCLC measurements, we determined the mobility of the 14.1 Angstrom polymorph to be 0.2 cm(2)/V s at room temperature. (C) 2002 Elsevier Science B.V. All rights reserved.</p>