Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Reynolds, Christopher S.

  • Google
  • 3
  • 12
  • 502

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2009Suzaku Observations of Local Ultraluminous Infrared Galaxies49citations
  • 2005Black Hole Spin in AGN and GBHCs21citations
  • 2003Fluorescent iron lines as a probe of astrophysical black hole systems432citations

Places of action

Chart of shared publication
Wilson, Andrew S.
1 / 1 shared
Teng, Stacy H.
1 / 3 shared
Nakagawa, Takao
1 / 2 shared
Sanders, D. B.
1 / 1 shared
Terashima, Yuichi
1 / 1 shared
Veilleux, Sylvain
1 / 5 shared
Anabuki, Naohisa
1 / 1 shared
Dermer, Charles D.
1 / 1 shared
Gallo, Luigi C.
1 / 1 shared
Brenneman, Laura W.
1 / 1 shared
Garofalo, David
1 / 1 shared
Nowak, Michael A.
1 / 1 shared
Chart of publication period
2009
2005
2003

Co-Authors (by relevance)

  • Wilson, Andrew S.
  • Teng, Stacy H.
  • Nakagawa, Takao
  • Sanders, D. B.
  • Terashima, Yuichi
  • Veilleux, Sylvain
  • Anabuki, Naohisa
  • Dermer, Charles D.
  • Gallo, Luigi C.
  • Brenneman, Laura W.
  • Garofalo, David
  • Nowak, Michael A.
OrganizationsLocationPeople

article

Fluorescent iron lines as a probe of astrophysical black hole systems

  • Reynolds, Christopher S.
  • Nowak, Michael A.
Abstract

With most physicists and astrophysicists in agreement that black holes do indeed exist, the focus of astrophysical black hole research has shifted to the detailed properties of these systems. Nature has provided us with an extremely useful probe of the region very close to an accreting black hole-X-ray irradiation of relatively cold material in the vicinity of the black hole can imprint characteristic features into the X-ray spectra of black hole systems, most notably the /Kα fluorescent line of iron. Detailed X-ray spectroscopy of these features can be used to study Doppler and gravitational redshifts, thereby providing key information on the location and kinematics of the cold material. This is a powerful tool that allows us to probe within a few gravitational radii, or less, of the event horizon. Here, we present a comprehensive review of relativistic iron line studies for both accreting stellar mass black holes (i.e., galactic black hole candidate systems, GBHCs), and accreting supermassive black holes (i.e., active galactic nuclei, AGN). We begin with a pedagogical introduction to astrophysical black holes, GBHCs, AGN, and accretion disks (including a brief discussion of recent work on the magnetohydrodynamical properties of accretion disks). We then discuss studies of relativistic iron lines in the AGN context, and show how differences between classes of AGN can be diagnosed using X-ray spectroscopy. Furthermore, through a detailed discussion of one particular object (MCG-6-30-15), we illustrate how the exotic physics of black hole spin, such as the Penrose and Blandford-Znajek processes, are now open to observational study. We proceed to discuss GBHCs, which turn out to possess rather more complicated X-ray spectra, making robust conclusions more difficult to draw. However, even in these cases, modern X-ray observatories are now providing convincing evidence for relativistic effects. We conclude by discussing the science that can be addressed by future X-ray observatories....

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • iron
  • X-ray spectroscopy