Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Williams, P. T.

  • Google
  • 2
  • 13
  • 215

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2007Influence of particle size on the analytical and chemical properties of two energy crops201citations
  • 2001Developments in local approach methodology with application to the analysis/re-analysis of the NESC-1 PTS benchmark experiment14citations

Places of action

Chart of shared publication
Thain, S. C.
1 / 1 shared
Bridgwater, Tony
1 / 6 shared
Bridgeman, T. G.
1 / 1 shared
Jones, J. M.
1 / 5 shared
Donnison, I. S.
1 / 2 shared
Shield, I.
1 / 2 shared
Yates, N.
1 / 2 shared
Barraclough, T.
1 / 1 shared
Darvell, L. I.
1 / 2 shared
Fahmi, R.
1 / 2 shared
Lidbury, D. P. G.
1 / 6 shared
Sherry, Andrew H.
1 / 63 shared
Bass, B. R.
1 / 4 shared
Chart of publication period
2007
2001

Co-Authors (by relevance)

  • Thain, S. C.
  • Bridgwater, Tony
  • Bridgeman, T. G.
  • Jones, J. M.
  • Donnison, I. S.
  • Shield, I.
  • Yates, N.
  • Barraclough, T.
  • Darvell, L. I.
  • Fahmi, R.
  • Lidbury, D. P. G.
  • Sherry, Andrew H.
  • Bass, B. R.
OrganizationsLocationPeople

article

Developments in local approach methodology with application to the analysis/re-analysis of the NESC-1 PTS benchmark experiment

  • Lidbury, D. P. G.
  • Williams, P. T.
  • Sherry, Andrew H.
  • Bass, B. R.
Abstract

Local Approach methods have received considerable attention in recent years as a complementary approach to structural integrity assessment. These approaches are based on the application of micro-mechanistic models of failure in which the stress, strain and 'damage' local to the crack-tip are related to the critical conditions required to initiate/propagate fracture. The models are calibrated in terms of material parameters that are deemed fully transferable and derived using a combination of reference test data and supporting stress analysis. Once calibrated, using small-scale test data, the models are assumed independent on geometry and loading configuration. For a given failure mechanism, the model parameters may be used in the assessment of a structure fabricated from the same material (for appropriate temperatures, loading rates, etc). The paper describes the work initially undertaken in relation to the NESC-1 (Network for Evaluating Steel Components) spinning cylinder test, in order to validate the application of Local Approach methods for the case of PTS loading. The predicted amount of pre-cleavage ductile tearing and the timing of the subsequent cleavage event are compared with the observed fracture behaviour of the defect. The paper then highlights several areas in which Local Approach methodology has been developed since the initial work on PTS. These include: • Calibration of the cleavage model across a range of temperatures and constraint states. • Treatment of 3D defects. • Reference to hydrostatic stress in cleavage fracture predictions. • Simplification and standardisation of analytical techniques for more routine use in integrity assessments. The paper concludes that results from large-scale structural experiments, such as the NESC-1 spinning cylinder test, will be of lasting value in validating developments in Local Approach methodology and other advanced methods of fracture assessment. This is particularly true in the authors' current work that seeks to achieve an overall simplification in methodology, without sacrificing predictive accuracy. © 2001 Elsevier Science Ltd. All rights reserved.

Topics
  • impedance spectroscopy
  • experiment
  • crack
  • steel
  • spinning