Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Niemann, Sabine

  • Google
  • 1
  • 3
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2001Magnetic properties of rare-earth transition metal aluminides R6T4Al43 with Ho6Mo4Al43-type structure29citations

Places of action

Chart of shared publication
Ebel, Thomas
1 / 31 shared
Jeitschko, Wolfgang
1 / 1 shared
Wolff, Michael W.
1 / 1 shared
Chart of publication period
2001

Co-Authors (by relevance)

  • Ebel, Thomas
  • Jeitschko, Wolfgang
  • Wolff, Michael W.
OrganizationsLocationPeople

article

Magnetic properties of rare-earth transition metal aluminides R6T4Al43 with Ho6Mo4Al43-type structure

  • Ebel, Thomas
  • Jeitschko, Wolfgang
  • Wolff, Michael W.
  • Niemann, Sabine
Abstract

<p>The magnetic properties of 53 aluminum-rich intermetallic compounds R<sub>6</sub>T<sub>4</sub>Al<sub>43</sub> with R = rare-earth elements and T = Ti, V, Nb, Ta, Cr, Mo, W were investigated using polycrystalline samples and a SQUID magnetometer in the temperature range from 2 to 300 K with magnetic flux densities up to 5.5 T. The yttrium and lutetium compounds are Pauli paramagnetic, indicating that the transition metal atoms do not carry magnetic moments. The samarium compounds show van Vleck behavior and antiferromagnetic order with Neel temperatures of less than 12 K. Of these Sm<sub>6</sub>Ti<sub>4</sub>Al<sub>43</sub> becomes metamagnetic. The ytterbium compounds show a mixed or intermediate valent behavior and no magnetic order down to 2 K. All other compounds obey the Curie-Weiss law above 30 K. Their effective magnetic moments correspond to the theoretical moments of the rare-earth ions. They show ferromagnetic or metamagnetic behavior with ordering temperatures all below 20 K. The magnetization curves of most compounds (recorded up to 5.5 T) reach about 50% of the theoretical magnetization already at 0.5 T. The gadolinium compounds are exceptional in that they reach at 0.5 T only about 10% of their theoretical magnetization. The crystal structures of the isotypic compounds Yb<sub>6</sub>V<sub>4</sub>Al<sub>43</sub> and Yb<sub>6</sub>Ta<sub>4</sub>Al<sub>43</sub> were refined from single-crystal X-ray data.</p>

Topics
  • compound
  • aluminium
  • laser emission spectroscopy
  • Yttrium
  • magnetization
  • Gadolinium
  • aluminide
  • Ytterbium
  • Lutetium
  • Samarium