People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cartmell, Matthew
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Application of a dynamic thermoelastic coupled model for an aerospace aluminium composite panelcitations
- 2021Experimental investigation of the thermoelastic performance of an aerospace aluminium honeycomb composite panelcitations
- 2012Applications for shape memory alloys in structural and machine dynamicscitations
- 2010An analytical model for the vibration of a composite plate containing an embedded periodic shape memory alloy structurecitations
- 2008Smart materials applications to structural dynamics and rotating machines
- 2007The control of bearing stiffness using shape memory
- 2006Proposals for controlling flexible rotor vibrations by means of an antagonistic SMA/composite smart bearingcitations
- 2003Static and dynamic behaviour of composite structures with shape memory alloy componentscitations
- 2003Dynamics of multilayered composite plates with shape memory alloy wirescitations
- 2003One-dimensional shape memory alloy models for use with reinforced composite structurescitations
- 2003A sensitivity analysis of the dynamic performance of a composite plate with shape memory alloy wirescitations
- 2001Statics and dynamics of composite structures with embedded shape memory alloys
Places of action
Organizations | Location | People |
---|
article
A sensitivity analysis of the dynamic performance of a composite plate with shape memory alloy wires
Abstract
In this paper the dynamic performance of a multi-layered composite plate with embedded shape memory alloy (SMA) wires has been investigated in terms of the changes in its relative fundamental natural frequency. A sensitivity analysis has been carried out on the influence of various geometrical parameters and material properties on the plate’s dynamic performance, as well as the influence of the form of boundary condition. The use of the active property tuning (APT) method and the active strain energy tuning (ASET) method has also been discussed within the paper. The finite element method has been used for the analysis, and a new element has been exploited for modelling multi-layered composite plates. It has been found that the dynamic performance of the multi-layered composite plate with embedded SMA wires strongly depends on the plate geometry and the form of boundary condition, however, the dynamics can be successfully controlled and influenced by an optimal selection of the geometrical parameters and material properties.