People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schmithusen, F.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Structural properties and surface morphology of laser-deposited amorphous carbon and carbon nitride films
Abstract
<p>A study of the relationship between structure and growth parameters for existing and candidate carbon-based protective coatings has been carried out. In particular, diamond-like carbon (DLC) and carbon nitride thin films were deposited on silicon wafers by pulsed Nd:YAG laser (wavelength 532 nm) ablation of graphite in high vacuum (p = 1.5 x 10<sup>-7</sup> Pa) and in a nitrogen atmosphere (p = 13 Pa). The composition (N/C ratio), the structural and electronic properties and the surface morphology of the deposited films were investigated as a function of laser fluence (1-12 J/cm<sup>2</sup>). The highest N/C ratio 0.40 was obtained with a laser fluence of 12 J/cm<sup>2</sup>; for this nitrogen concentration X-ray photoelectron spectroscopy (XPS) reveals an increase of C-N bonds instead of C=N bonds with respect to lower concentrations. Electron energy loss spectroscopy (EELS) and XPS show an increase of sp<sup>2</sup> carbon bonded sites in the DLC films deposited with lower laser fluences in agreement with the theory of the so-called sub-implantation model. EELS also reveals a gradient in the chemical nature of the films through the thickness. Atomic force microscopy analysis shows that the root-mean-squared roughness of the DLC samples is about 3 Å over the laser fluence range investigated. (C) 2000 Elsevier Science S.A. All rights reserved.</p>