Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Blas, Javier García De

  • Google
  • 7
  • 5
  • 134

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022Considering Thermal Diffusivity as a Design Factor in Multilayer Hybrid Ice Protection Systems1citations
  • 2019Failure analysis of the rod-end bearing of an actuating cylinder10citations
  • 2012Aluminum slurry coatings to replace cadmium for aeronautic applications25citations
  • 2011HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators67citations
  • 2004Vacuum tribological behaviour of self-lubricating quasicrystalline composite coatings2citations
  • 2002Characterisation of Tribological Quasicrystalline Composite Coatingscitations
  • 2001Thermal spray coatings for molten carbonate fuel cells separator plates29citations

Places of action

Chart of shared publication
Mora, Julio
1 / 6 shared
Carreño, Francisco
1 / 3 shared
Val, Miguel González Del
1 / 1 shared
Agüero, Alina
1 / 4 shared
García, Paloma
1 / 4 shared
Chart of publication period
2022
2019
2012
2011
2004
2002
2001

Co-Authors (by relevance)

  • Mora, Julio
  • Carreño, Francisco
  • Val, Miguel González Del
  • Agüero, Alina
  • García, Paloma
OrganizationsLocationPeople

article

Thermal spray coatings for molten carbonate fuel cells separator plates

  • Blas, Javier García De
Abstract

Molten salt corrosion at the wet seal of separator plates is one of the principal life-limiting factors of molten carbonate fuel cells (MCFC). The wet seal must therefore be coated with an aluminide layer that is commonly produced by ion vapor deposition (IVD) of Al followed by heat treatment. However, this coating only lasts approximately 20 000 h and not the 40 000 h expected for a cell life. Moreover, the IVD Al coating is also very expensive since only a few plates can be coated simultaneously due to size limitations of the existing commercial vacuum chambers employed in IVD. The need of heat treatment further increases costs, particularly since it requires long heating and cooling cycles in order to minimize distortion of the thin stainless steel plates. Thermally sprayed coatings constitute an alternative that requires neither containment nor heat treatment, and also provides the possibility of depositing materials more resistant to molten carbonates than plain aluminides. However, separator plates coated by thermal spray suffer distortion, due both to sand blasting (usually required prior to coating), and to the heat transfer process that occurs during the spraying process. In this work, commercially available coatings have been applied by plasma spray and high velocity oxyfuel (HVOF), employing alternative surface preparation methods. Moreover, substrate pre-heating and/or cooling during deposition were examined in order to eliminate substrate distortion. FeCrAl, and NiAl as well as a quasi-crystalline approximant alloy AlCoFeCr were deposited on AISI 310 foils, and after optimization the resulting coatings were characterized by means of scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The optimized coatings were then tested by immersion in a 62 mol.% Li2CO3/38 mol.% K2CO3 molten carbonate eutectic mixture at 700°C and by electrochemical impedance spectroscopy. IVD Al coatings were also tested for comparison purposes. The results indicate that FeCrAl exhibits a higher molten salt corrosion resistance than IVD aluminide coatings whereas NiAl was attacked shortly after the beginning of the test. The QC approximant AlCoFeCr resisted 1000 h of attack but its composition changed. Grinding of the substrate prior to coating resulted in good adhesion and substrate distortion was minimized by Ar cooling during deposition.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • stainless steel
  • corrosion
  • scanning electron microscopy
  • grinding
  • Energy-dispersive X-ray spectroscopy
  • spray coating
  • aluminide