Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rives, Alain

  • Google
  • 2
  • 3
  • 12

Université de Lille

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2003Study of adsorption of oxygen on -Al 2 O 3 + Au and - Al 2 O 3 + Pt: Work function measurements ; proposition of a model.6citations
  • 2003Study of adsorption of oxygen on -Al<sub>2</sub>O<sub>3</sub> + Au and - Al<sub>2</sub>O<sub>3</sub> + Pt: Work function measurements ; proposition of a model.6citations

Places of action

Chart of shared publication
Guillet, Nicolas
2 / 4 shared
Pijolat, Christophe
2 / 11 shared
Lalauze, René
2 / 2 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Guillet, Nicolas
  • Pijolat, Christophe
  • Lalauze, René
OrganizationsLocationPeople

article

Study of adsorption of oxygen on -Al<sub>2</sub>O<sub>3</sub> + Au and - Al<sub>2</sub>O<sub>3</sub> + Pt: Work function measurements ; proposition of a model.

  • Rives, Alain
  • Guillet, Nicolas
  • Pijolat, Christophe
  • Lalauze, René
Abstract

To improve the understanding of the electrochemical effects observed on an original potentiometric gas sensor, interactions of oxygen with the device were investigated. This gas sensor is made of a solid electrolyte (treated Na-β-alumina) associated with two metallic electrodes (gold and platinum) located in the same gas mixture. Adsorption of charged oxygen species, considered responsible for the electrical response developed by the sensor, was investigated by work function measurements. Results showed that charged oxygen species only form on partially gold or platinum covered solid electrolyte. Comparison of these results with those obtained in a previous calorimetric study of interactions between oxygen and the same materials suggests the existence of at least two different oxygen species adsorbed on the surface of the sensitive element. The first one, located on the solid electrolyte surface, is neutral and characterized by an endothermal reaction of formation. The second one is charged and probably produced at the gas/solid electrolyte/metallic electrode interface. A mechanism based on the concept of "three phase boundary" and similar to the "reverse spillover" phenomenon is proposed to account for the adsorption of these oxygen species.

Topics
  • impedance spectroscopy
  • surface
  • phase
  • Oxygen
  • Platinum
  • gold
  • phase boundary