People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gamaly, Eugene
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2018Ultrafast re-structuring of the electronic landscape of transparent dielectricscitations
- 2014Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulsecitations
- 2014Phase Transformation in Laser-Induced Micro-Explosion in Olivine (Fe,Mg)(2)SiO4citations
- 2006Origin of magnetic moments in carbon nanofoamcitations
- 2006Spin glass behaviour of magnetic carbon nanoclusters
- 2005Ablation of metals with picosecond laser pulsescitations
- 2002 Laser-deposited As 2 S 3 chalcogenide films for waveguide applications citations
- 2002Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablationcitations
- 2000Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablationcitations
Places of action
Organizations | Location | People |
---|
article
Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation
Abstract
<p>A new form of carbon material, a low-density cluster-assembled carbon nanofoam was produced by high-repetition-rate laser ablation of a glassy carbon target in an ambient non-reactive Ar atmosphere. The foam poses a unique combination of properties, such as one of the lowest solid density and high resistivity, similar to that of amorphous diamond-like films. Electron energy loss spectra demonstrate that the carbon foam has a significant, 35% in average, fraction of sp<sup>3</sup>-bonding. The measured density of spins in the foam, 8.8 × 10<sup>20</sup>g<sup>-1</sup>, is one of the highest observed in tetrahedrally-bonded carbon. This density of spins corresponds to paramagnetic susceptibility of about 0.01 of that for transition metals, which is in a striking contrast to diamagnetic properties of all other known allotropes of carbon.</p>