Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Passmore, Ms

  • Google
  • 3
  • 20
  • 65

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2002Performance of an energy resolving X-ray pixel detector7citations
  • 2002Charge sharing in silicon pixel detectors52citations
  • 2001Applications of pixellated GaAs X-ray detectors in a synchrotron radiation beam6citations

Places of action

Chart of shared publication
Prydderch, M.
1 / 2 shared
Seller, P.
2 / 7 shared
Bates, R.
2 / 4 shared
Thomas, Sl
1 / 1 shared
Iles, G.
1 / 1 shared
Lowe, B.
1 / 3 shared
Smith, K.
1 / 9 shared
Mathieson, Keith
3 / 10 shared
Derbyshire, G.
1 / 1 shared
Gannon, Wjf
1 / 1 shared
Oshea, V.
2 / 7 shared
Smith, Km
2 / 5 shared
Bates, Rl
1 / 2 shared
Prydderch, Ml
1 / 1 shared
Rahman, M.
1 / 12 shared
Mikulec, B.
1 / 1 shared
Campbell, M.
1 / 5 shared
Schwarz, C.
1 / 1 shared
Whitehill, C.
1 / 1 shared
Watt, J.
1 / 1 shared
Chart of publication period
2002
2001

Co-Authors (by relevance)

  • Prydderch, M.
  • Seller, P.
  • Bates, R.
  • Thomas, Sl
  • Iles, G.
  • Lowe, B.
  • Smith, K.
  • Mathieson, Keith
  • Derbyshire, G.
  • Gannon, Wjf
  • Oshea, V.
  • Smith, Km
  • Bates, Rl
  • Prydderch, Ml
  • Rahman, M.
  • Mikulec, B.
  • Campbell, M.
  • Schwarz, C.
  • Whitehill, C.
  • Watt, J.
OrganizationsLocationPeople

article

Charge sharing in silicon pixel detectors

  • Oshea, V.
  • Passmore, Ms
  • Smith, Km
  • Seller, P.
  • Mathieson, Keith
  • Bates, Rl
  • Prydderch, Ml
  • Rahman, M.
Abstract

We used a pixellated hybrid silicon X-ray detector to study the effect of the sharing of generated charge between neighbouring pixels over a range of incident X-ray energies, 13–36 keV. The system is a room temperature, energy resolving detector with a Gaussian FWHM of 265 eV at 5.9 keV. Each pixel is 300 μm square, 300 μm deep and is bump bonded to matching read out electronics. The modelling packages MEDICI and MCNP were used to model the complete X-ray interaction and the subsequent charge transport. Using this software a model is developed which reproduces well the experimental results. The simulations are then altered to explore smaller pixel sizes and different X-ray energies. Charge sharing was observed experimentally to be 2% at 13 keV rising to 4.5% at 36 keV, for an energy threshold of 4 keV. The models predict that up to 50% of charge may be lost to the neighbouring pixels, for an X-ray energy of 36 keV, when the pixel size is reduced to 55 μm.

Topics
  • impedance spectroscopy
  • simulation
  • Silicon