People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mclaughlin, James
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Machine Learning-Based Structural Health Monitoring Technique for Crack Detection and Localisation Using Bluetooth Strain Gauge Sensor Networkcitations
- 2018Nanostructured nitrogen doped diamond for the detection of toxic metal ions
- 2018Nanostructured nitrogen doped diamond for the detection of toxic metal ions
- 2017Novel π-conjugated iron oxide/reduced graphene oxide nanocomposites for high performance electrochemical supercapacitorscitations
- 2017Development of an embedded thin-film strain-gauge-based SHM network into 3D-woven composite structure for wind turbine bladescitations
- 2017Functional diamond like carbon (DLC) coatings on polymer for improved gas barrier performancecitations
- 2017Development of an Embedded Thin-film Strain-sensor-based SHM for Composite Tidal Turbine Blades
- 2011Structural and surface energy analysis of nitrogenated ta-C filmscitations
- 2010Effect of thin aluminum interlayer on growth and microstructure of carbon nanotubescitations
- 2010Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor depositioncitations
- 2009Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.citations
- 2009Substrate effects on the microstructure of hydrogenated amorphous carbon filmscitations
- 2009Glycine Adsorption onto DLC and N-DLC Thin Films Studied by XPS and AFMcitations
- 2007Intrinsic mechanical properties of ultra-thin amorphous carbon layerscitations
- 2006Measuring the thickness of ultra-thin diamond-like carbon filmscitations
- 2005Electronic properties of a-CNx thin films : An x-ray-absorption and photoemission spectroscopy studycitations
- 2005Electronic structure and photoluminescence study of silicon doped diamond like carbon (Si:DLC) thin filmscitations
- 2005Structural investigation and gas barrier performance of diamond-like carbon based films on polymer substratescitations
- 2005Spectroscopic analysis of a-C and a-CNx films prepared by ultrafast high repetition rate pulsed laser depositioncitations
- 2004Platelet adhesion on silicon modified hydrogenated amorphous carbon films.citations
- 2004Macrophage responses to vascular stent coatings.
- 2004Electronic structure and bonding properties of Si-doped hydrogenated amorphous carbon filmscitations
- 2001Electrical characteristics of nitrogen incorporated hydrogenated amorphous carboncitations
- 2001Intrinsic stress measured on ultra-thin amorphous carbon films deposited on AFM cantileverscitations
- 2001The insulating properties of a-C:H on silicon and metal substratescitations
- 2000Nitrogen doping of amorphous DLC films by rf plasma dissociated nitrogen atom surface bombardment in a vacuumcitations
- 2000The effects of Si incorporation on the microstructure and nanomechanical properties of DLC thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Platelet adhesion on silicon modified hydrogenated amorphous carbon films.
Abstract
We have investigated the effect of changes in microstructure, surface energy, surface charge condition and electronic conduction on the interaction of human platelets with silicon modified hydrogenated amorphous carbon films (a-C:H:Si or Si-DLC). Results based on Raman spectroscopy, Scanning electron microscopy, X-ray photo-electron spectroscopy, surface energy measurements, electrical resistivity, contact potential difference, and thermal annealing indicates a correlation between some of the measured values and the interaction of the films with human blood platelets. Statistical analysis of platelet aggregation on the films using the Student's t-test indicated differences between platelet aggregation on the modified films compared to the as-deposited film at a p-value of <0.05.