Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Morita, David K.

  • Google
  • 1
  • 7
  • 87

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents87citations

Places of action

Chart of shared publication
Furlan, Wayne R.
1 / 1 shared
Listemann, Mark L.
1 / 1 shared
Maroto-Valer, Mercedes
1 / 18 shared
Mcdaniel, Paula L.
1 / 1 shared
Andresen, John M.
1 / 2 shared
Miller, John W.
1 / 1 shared
Tang, Zhong
1 / 1 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Furlan, Wayne R.
  • Listemann, Mark L.
  • Maroto-Valer, Mercedes
  • Mcdaniel, Paula L.
  • Andresen, John M.
  • Miller, John W.
  • Tang, Zhong
OrganizationsLocationPeople

article

Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents

  • Morita, David K.
  • Furlan, Wayne R.
  • Listemann, Mark L.
  • Maroto-Valer, Mercedes
  • Mcdaniel, Paula L.
  • Andresen, John M.
  • Miller, John W.
  • Tang, Zhong
Abstract

<p>In order to understand the effect of flame retardant (FR) and blowing agents on the thermal stability of rigid polyurethane foams and their resultant chars, two series of polyurethane foams produced with different blowing agents (HCFC-141b and pentane) and various concentrations of a FR (0-50 wt%) were investigated using, standard flammability test (ASTM, D-3014), solid-state C-13 NMR, TGA and Py-GC/MS. The unique combination of these analytical techniques has proved to be a valuable method for understanding the thermal degradation of rigid polyurethane foams. The standard flammability tests indicate an optimum FR concentration of about 15 wt% for foams using HCFC-141b as the blowing agent, while no optimum condition was determined with pentane. The percent mass retained (PMR) values or char yields have a linear relationship with combustion flame temperature in both series of blowing agents. The solid-state C-13 NMR studies clearly show that pentane is chemisorbed during the polymerization and is retained within the foam matrix. The chars have lower concentrations of methylene and oxygenated aliphatic carbons, but a subsequent increase in aromatics is observed. The FR investigated preserves the chemical structure of the polyurethane foam, and, therefore, results in a higher PMR or char yield. The TGA experimental data showed that the maximum combustion reactivities of the chars have a linear relationship with the FR concentration in the parent foams. Py-GC/MS results indicate that the aliphatic oxygenated functional groups are the first to evolve during the pyrolysis and combustion of the polymeric structure. Finally, this study has shown that the addition of FR to the foam formulation results in lower concentrations of small molecules being volatilized, and therefore, preserving the original chemical structure of the parent foam. However, the FR investigated does not seem to be as effective for the pentane series, and gives higher char aromaticities and PMR values than those reported for the HCFC-141b series. (C) 2002 Published by Elsevier Science Ltd.</p>

Topics
  • pyrolysis
  • impedance spectroscopy
  • Carbon
  • mass spectrometry
  • combustion
  • thermogravimetry
  • Nuclear Magnetic Resonance spectroscopy
  • pyrolysis gas chromatography
  • flammability