People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Desimone, Joseph M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2011Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networkscitations
- 2010High modulus, low surface energy, photochemically cured materials from liquid precursorscitations
- 2009Photochemically cross-linked perfluoropolyether-based elastomerscitations
- 2002Electrospinning of polymer nanofibers with specific surface chemistrycitations
Places of action
Organizations | Location | People |
---|
article
Electrospinning of polymer nanofibers with specific surface chemistry
Abstract
Electrospinning is a process by which sub-micron polymer fibers can be produced using an electrostatically driven jet of polymer solution (or polymer melt). Electrospun textiles are of interest in a wide variety of applications including semi-permeable membranes, filters, composite applications, and as scaffolding for tissue engineering. The goal of the research presented here is to demonstrate that it is possible to produce sub-micron fibers with a specific surface chemistry through electrospinning. This has been accomplished by electrospinning a series of random copolymers of PMMA-r-TAN from a mixed solvent of toluene and dimethyl formamide. X-ray Photoelectron Spectroscopy (XPS) analysis shows that the atomic percentage of fluorine in the near surface region of the electrospun fibers is about double the atomic percentage of fluorine found in a bulk sample of the random copolymer, as determined by elemental analysis. These results are in good agreement with XPS and water contact angle results obtained from thin films of the same copolymer materials.