People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sigmund, Ole
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (47/47 displayed)
- 2024Vibroacoustic topology optimization for sound transmission minimization through sandwich structurescitations
- 2024Adding friction to Third Medium Contact:A crystal plasticity inspired approachcitations
- 2024Experimental realization of deep sub-wavelength confinement of light in a topology-optimized InP nanocavitycitations
- 2024Adding friction to Third Medium Contact: A crystal plasticity inspired approachcitations
- 2023Holistic computational design within additive manufacturing through topology optimization combined with multiphysics multi-scale materials and process modellingcitations
- 2023Inverse design of mechanical springs with tailored nonlinear elastic response utilizing internal contactcitations
- 2021Plate microstructures with extreme stiffness for arbitrary multi-loadingscitations
- 2021Topology optimization of microvascular composites for active-cooling applications using a geometrical reduced-order modelcitations
- 2021On the competition for ultimately stiff and strong architected materialscitations
- 2020EML webinar overview: Topology Optimization — Status and Perspectivescitations
- 2019Simple single-scale interpretations of optimal designs in the context of extremal stiffness
- 2019Simple single-scale interpretations of optimal designs in the context of extremal stiffness
- 2019Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infillcitations
- 2018Benchmarking state-of-the-art numerical simulation techniques for analyzing large photonic crystal membrane line defect cavities
- 2018Benchmarking state-of-the-art numerical simulation techniques for analyzing large photonic crystal membrane line defect cavities
- 2018Benchmarking state-of-the-art optical simulation methods for analyzing large nanophotonic structures
- 2018Benchmarking state-of-the-art optical simulation methods for analyzing large nanophotonic structures
- 2018Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavitiescitations
- 2018Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?
- 2018Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?
- 2018Investment casting and experimental testing of heat sinks designed by topology optimizationcitations
- 2018Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavitiescitations
- 2017Comparison of Five Computational Methods for Computing Q Factors in Photonic Crystal Membrane Cavities
- 2017Comparison of Five Computational Methods for Computing Q Factors in Photonic Crystal Membrane Cavities
- 2017Benchmarking five computational methods for analyzing large photonic crystal membrane cavitiescitations
- 2017Benchmarking five computational methods for analyzing large photonic crystal membrane cavitiescitations
- 2016Creating Materials with Negative Refraction Index using Topology Optimization
- 2016Comparison of four computational methods for computing Q factors and resonance wavelengths in photonic crystal membrane cavities
- 2016Comparison of four computational methods for computing Q factors and resonance wavelengths in photonic crystal membrane cavities
- 2015Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformationscitations
- 2014Design of manufacturable 3D extremal elastic microstructurecitations
- 2014Design of materials with prescribed nonlinear propertiescitations
- 2014On the realization of the bulk modulus bounds for two-phase viscoelastic compositescitations
- 2013A Review of the Scattering-Parameter Extraction Method with Clarification of Ambiguity Issues in Relation to Metamaterial Homogenizationcitations
- 2012Robust topology design of periodic grating surfacescitations
- 2012Inverse design of dielectric materials by topology optimizationcitations
- 2012Towards all-dielectric, polarization-independent optical cloakscitations
- 2012Optimized manufacturable porous materials
- 2012Enhancing the Damping Properties of Viscoelastic Composites by Topology Optimization
- 2011Modelling of Active Semiconductor Photonic Crystal Waveguides and Robust Designs based on Topology Optimization
- 2011Modelling of Active Semiconductor Photonic Crystal Waveguides and Robust Designs based on Topology Optimization
- 2011Minimal compliance design for metal–ceramic composites with lamellar microstructurescitations
- 2010Extreme non-linear elasticity and transformation optics
- 2008Rapid prototyping of nanotube-based devices using topology-optimized microgripperscitations
- 2007Topology optimization of acoustic-structure interaction problems using a mixed finite element formulationcitations
- 2000A new Class of Extremal Compositescitations
- 2000Multiphase composites with extremal bulk moduluscitations
Places of action
Organizations | Location | People |
---|
article
Multiphase composites with extremal bulk modulus
Abstract
This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainable, that is, there exist composites with extreme bulk and shear moduli. For multiphase composites, they may or may not be attainable depending on phase moduli and volume fractions. Sufficient conditions of attainability of the bounds and various previously known and new types of optimal composites are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination of parameters where the HSW bound is known to be attainable, new microstructures are found numerically that possess bulk moduli close to the bound. Moreover, new types of microstructures with bulk moduli close to the bound are found numerically for the situations where the aforementioned attainability conditions are not met. Based on the numerical results, several new types of structures that possess extremal bulk modulus are suggested and studied analytically. The bulk moduli of the new structures are either equal to the HSW bound or higher than the bulk modulus of any other known composite with the same phase moduli and volume fractions. It is proved that the HSW bound is attainable in a much wider range than it was previously believed. Results are readily applied to two-dimensional three-phase isotropic conducting composites with extremal conductivity. They can also be used to study transversely isotropic three-dimensional three-phase composites with cylindrical inclusions of arbitrary cross-sections (plane strain problem) or transversely isotropic thin plates (plane stress or bending of plates problems). (C) 2000 Elsevier Science Ltd. All rights reserved.