Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shu, J. Y.

  • Google
  • 1
  • 2
  • 165

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2001Boundary layers in constrained plastic flow165citations

Places of action

Chart of shared publication
Needleman, A.
1 / 34 shared
Fleck, N. A.
1 / 9 shared
Chart of publication period
2001

Co-Authors (by relevance)

  • Needleman, A.
  • Fleck, N. A.
OrganizationsLocationPeople

article

Boundary layers in constrained plastic flow

  • Shu, J. Y.
  • Needleman, A.
  • Fleck, N. A.
Abstract

Simple shear of a constrained strip is analyzed using discrete dislocation plasticity and strain gradient crystal plasticity theory. Both single slip and symmetric double slip are considered. The loading is such that for a local continuum description of plastic flow the deformation state is one of homogeneous shear. In the discrete dislocation formulation the dislocations are all of edge character and are modeled as line singularities in an elastic material. Dislocation nucleation, the lattice resistance to dislocation motion and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. A complementary solution that enforces the boundary conditions is obtained via the finite element method. The discrete dislocation solutions give rise to boundary layers in the deformation field and in the dislocation distributions. The back-extrapolated flow strength for symmetric double slip increases with decreasing strip thickness, so that a size effect is observed. The strain gradient plasticity theory used here is also found to predict a boundary layer and a size effect. Nonlocal material parameters can be chosen to fit some, but not all, of the features of the discrete dislocation results. Additional physical insight into the slip distribution across the strip is provided by simple models for an array of mode II cracks.

Topics
  • impedance spectroscopy
  • polymer
  • theory
  • crack
  • strength
  • dislocation
  • plasticity
  • crystal plasticity