Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, M. H. P. Da

  • Google
  • 1
  • 7
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Porous glass reinforced hydroxyapatite materials produced with different organic additives47citations

Places of action

Chart of shared publication
Ferreira, José Maria Da Fonte
1 / 456 shared
Prado Da Silva, M. H.
1 / 2 shared
Gibson, Iain
1 / 23 shared
Santos, J. D.
1 / 10 shared
Ferreira, J. M. F.
1 / 9 shared
Gibson, I. R.
1 / 1 shared
Lemos, A. F.
1 / 26 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Ferreira, José Maria Da Fonte
  • Prado Da Silva, M. H.
  • Gibson, Iain
  • Santos, J. D.
  • Ferreira, J. M. F.
  • Gibson, I. R.
  • Lemos, A. F.
OrganizationsLocationPeople

article

Porous glass reinforced hydroxyapatite materials produced with different organic additives

  • Ferreira, José Maria Da Fonte
  • Prado Da Silva, M. H.
  • Gibson, Iain
  • Santos, J. D.
  • Ferreira, J. M. F.
  • Gibson, I. R.
  • Lemos, A. F.
  • Silva, M. H. P. Da
Abstract

<p>In the present study three different organic additives were used to produce porous structures of a CaO-P2O5 glass reinforced hydroxyapatite potato starch, almond crust and wax spheres. The produced samples were analysed by scanning electron microscopy, X-ray diffraction with Rietveld refinement, differential thermal analysis and mercury porosimetry. The techniques used in this study enabled the production of glass reinforced hydroxyapatite samples with various pore diameters. Two different techniques were used to produce porous glass reinforced hydroxyapatite samples: a dry method using wax spheres as pore formers and a wet method in alcoholic suspension, where almond crust and potato starch were used as pore formers. The final microstructure consists of hydroxyapatite, alpha-tricalcium phosphate and beta-tricalcium phosphate. X-ray diffraction and scanning electron microscopy analysis revealed different percentages of phases when comparing dense and porous glass reinforced hydroxyapatite specimens, These hard materials are intended to be used as bone defect fillers. (C) 2002 Elsevier Science B.V. All rights reserved.</p>

Topics
  • porous
  • microstructure
  • pore
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • glass
  • glass
  • differential thermal analysis
  • porosimetry
  • Mercury