Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van, J. L. J. Dongen

  • Google
  • 1
  • 5
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2001Separation and characterization of oligomers by reversed-phase high-performance liquid chromatography : a study on well defined oligothiophenes13citations

Places of action

Chart of shared publication
Langeveld-Voss, B. M. W.
1 / 5 shared
Claessens, H. A.
1 / 2 shared
Cramers, C. A. M. G.
1 / 2 shared
Vonk, E. C.
1 / 2 shared
Janssen, René A. J.
1 / 151 shared
Chart of publication period
2001

Co-Authors (by relevance)

  • Langeveld-Voss, B. M. W.
  • Claessens, H. A.
  • Cramers, C. A. M. G.
  • Vonk, E. C.
  • Janssen, René A. J.
OrganizationsLocationPeople

article

Separation and characterization of oligomers by reversed-phase high-performance liquid chromatography : a study on well defined oligothiophenes

  • Langeveld-Voss, B. M. W.
  • Claessens, H. A.
  • Cramers, C. A. M. G.
  • Van, J. L. J. Dongen
  • Vonk, E. C.
  • Janssen, René A. J.
Abstract

Reversed-phase high-performance liquid chromatography (RP-HPLC) was used for the separation of 3-hexylthiophene oligomers in the range of 3 to 30 monomeric units, while systematically varying stationary and mobile phases. A set of different columns was chosen, covering a broad range of silica types, pore sizes and bonding chemistry. Mobile phases of tetrahydrofuran (THF) combined with water, acetonitrile (ACN) or methanol (MeOH) were used. Although differences between columns were small, a higher selectivity correlated with a lower hydrophobicity parameter from the Galushko column test. The model of Jandera, based on the linear solvent strength model of Snyder, was used to describe the retention of the oligomers in gradient mode. This gave information about selectivities on different stationary phases similar to the hydrophobicity parameter. Contrary to the stationary phase, the mobile phase had a major influence on the selectivity. The THF–water combination gave much higher selectivities compared to THF combined with MeOH or ACN. Using the aqueous mobile phase even enabled separation of different isomers. Determination of thermodynamic parameters for the model compounds showed that retention of the different isomers was mainly determined by the orientation of the side chains at both ends of the chain. An additional repeating unit in the middle of the polymer backbone gave a similar contribution to retention, irrespective of the orientation of its side chain. Three model isomers were separated by preparative RP-HPLC and identified by proton nuclear magnetic resonance spectroscopy. The combination of subsequent preparative size-exclusion chromatography, RP-HPLC and matrix-assisted laser desorption ionization time-of-flight mass spectrometry enabled the identification of the two major oligomeric series in the sample as the regioregular product with one bromine end group and, in smaller amounts, a regioirregular product with two bromine end groups.

Topics
  • pore
  • compound
  • polymer
  • phase
  • strength
  • size-exclusion chromatography
  • Nuclear Magnetic Resonance spectroscopy
  • spectrometry
  • High-performance liquid chromatography
  • time-of-flight mass spectrometry