Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rieppo, J.

  • Google
  • 3
  • 10
  • 473

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2006T2 relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage104citations
  • 2002Ultrasonic characterization of articular cartilagecitations
  • 2002Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation369citations

Places of action

Chart of shared publication
Nissi, M. J.
1 / 3 shared
Jurvelin, J. S.
3 / 9 shared
Töyräs, Juha
3 / 28 shared
Kiviranta, I.
1 / 3 shared
Laasanen, M. S.
3 / 3 shared
Nieminen, M. T.
2 / 2 shared
Helminen, H. J.
2 / 3 shared
Nieminen, H. J.
1 / 1 shared
Korhonen, R. K.
2 / 6 shared
Hirvonen, J.
2 / 2 shared
Chart of publication period
2006
2002

Co-Authors (by relevance)

  • Nissi, M. J.
  • Jurvelin, J. S.
  • Töyräs, Juha
  • Kiviranta, I.
  • Laasanen, M. S.
  • Nieminen, M. T.
  • Helminen, H. J.
  • Nieminen, H. J.
  • Korhonen, R. K.
  • Hirvonen, J.
OrganizationsLocationPeople

article

Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation

  • Jurvelin, J. S.
  • Töyräs, Juha
  • Helminen, H. J.
  • Laasanen, M. S.
  • Rieppo, J.
  • Korhonen, R. K.
  • Hirvonen, J.
Abstract

At mechanical equilibrium, articular cartilage is usually characterized as an isotropic elastic material with no interstitial fluid flow. In this study, the equilibrium properties (Young's modulus, aggregate modulus and Poisson's ratio) of bovine humeral, patellar and femoral cartilage specimens (n=26) were investigated using unconfined compression, confined compression, and indentation tests. Optical measurements of the Poisson's ratio of cartilage were also carried out. Mean values of the Young's modulus (assessed from the unconfined compression test) were 0.80±0.33, 0.57±0.17 and 0.31±0.18MPa and of the Poisson's ratio (assessed from the optical test) 0.15±0.06, 0.16±0.05 and 0.21±0.05 for humeral, patellar, and femoral cartilages, respectively. The indentation tests showed 30-79% (p<0.01) higher Young's modulus values than the unconfined compression tests. In indentation, values of the Young's modulus were independent of the indenter diameter only in the humeral cartilage. The mean values of the Poisson's ratio, obtained indirectly using the mathematical relation between the Young's modulus and the aggregate modulus in isotropic material, were 0.16±0.06, 0.21±0.05, and 0.26±0.08 for humeral, patellar, and femoral cartilages, respectively. We conclude that the values of the elastic parameters of the cartilage are dependent on the measurement technique in use. Based on the similar values of Poisson's ratios, as determined directly or indirectly, the equilibrium response of articular cartilage under unconfined and confined compression is satisfactorily described by the isotropic elastic model. However, values of the isotropic Young's modulus obtained from the in situ indentation tests are higher than those obtained from the in vitro unconfined or confined compression tests and may depend on the indenter size in use.

Topics
  • impedance spectroscopy
  • compression test
  • isotropic
  • interstitial
  • Poisson's ratio