Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

King, Penelope

  • Google
  • 11
  • 32
  • 562

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2019 An experimental study of SO 2 reactions with silicate glasses and supercooled melts in the system anorthite–diopside–albite at high temperature 11citations
  • 2018SO2 gas reactions with silicate glasses33citations
  • 2015Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption91citations
  • 2013Development of a new laboratory technique for high-temperature thermal emission spectroscopy of silicate melts23citations
  • 2013A micro-reflectance IR spectroscopy method for analyzing volatile species in basaltic, andesitic, phonolitic, and rhyolitic glasses22citations
  • 2013Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania)59citations
  • 2011Methods to analyze metastable and microparticulate hydrated and hydrous iron sulfate minerals21citations
  • 2009Effect of SiO2, total FeO, Fe3+/Fe2+ and alkali elements in basaltic glasses on mid-infrared spectra36citations
  • 2007Resolution of bridging oxygen signals from O 1s spectra of silicate glasses using XPS108citations
  • 2006A new approach to determine and quantify structural units in silicate glasses using micro-reflectance Fourier-Transform infrared spectroscopy73citations
  • 2002CO2 solubility and speciation in intermediate (andesitic) melts85citations

Places of action

Chart of shared publication
Guagliardo, P.
1 / 2 shared
Henley, R. W.
1 / 2 shared
Middleton, J. P.
1 / 2 shared
Mcmorrow, L.
1 / 1 shared
Renggli, C. J.
1 / 1 shared
Turner, M.
1 / 4 shared
Renggli, Christian J.
2 / 2 shared
Clark, David A.
1 / 1 shared
Wykes, Jeremy L.
1 / 1 shared
Brink, Frank J.
1 / 1 shared
Henley, Richard W.
1 / 1 shared
Ramsey, Michael S.
1 / 1 shared
Lee, Rachel J.
1 / 1 shared
Larsen, Jessica F.
1 / 1 shared
Ramirez, Carlos
1 / 1 shared
Mangasini, Frederick
1 / 1 shared
Barry, Peter H.
1 / 1 shared
Fischer, Tobias P.
1 / 1 shared
Moor, J. Maarten De
1 / 1 shared
Botcharnikov, Roman E.
1 / 4 shared
Hilton, David R.
1 / 1 shared
Hervig, Richard L.
1 / 1 shared
Hyde, Brendt C.
1 / 1 shared
Spilde, Michael N.
1 / 1 shared
Ali, Abdul Mehdi S.
1 / 1 shared
Dyar, M. Darby
2 / 5 shared
Dufresne, Céleste D. M.
1 / 1 shared
Dalby, Klm N.
1 / 1 shared
Zakaznova-Herzog, Valentina P.
1 / 2 shared
Nesbitt, H. Wayne
1 / 4 shared
Dalby, Kim N.
2 / 8 shared
Holloway, J. R.
1 / 1 shared
Chart of publication period
2019
2018
2015
2013
2011
2009
2007
2006
2002

Co-Authors (by relevance)

  • Guagliardo, P.
  • Henley, R. W.
  • Middleton, J. P.
  • Mcmorrow, L.
  • Renggli, C. J.
  • Turner, M.
  • Renggli, Christian J.
  • Clark, David A.
  • Wykes, Jeremy L.
  • Brink, Frank J.
  • Henley, Richard W.
  • Ramsey, Michael S.
  • Lee, Rachel J.
  • Larsen, Jessica F.
  • Ramirez, Carlos
  • Mangasini, Frederick
  • Barry, Peter H.
  • Fischer, Tobias P.
  • Moor, J. Maarten De
  • Botcharnikov, Roman E.
  • Hilton, David R.
  • Hervig, Richard L.
  • Hyde, Brendt C.
  • Spilde, Michael N.
  • Ali, Abdul Mehdi S.
  • Dyar, M. Darby
  • Dufresne, Céleste D. M.
  • Dalby, Klm N.
  • Zakaznova-Herzog, Valentina P.
  • Nesbitt, H. Wayne
  • Dalby, Kim N.
  • Holloway, J. R.
OrganizationsLocationPeople

article

CO2 solubility and speciation in intermediate (andesitic) melts

  • Holloway, J. R.
  • King, Penelope
Abstract

<p>We determined total CO<sub>2</sub> solubilities in andesite melts with a range of compositions. Melts were equilibrated with excess C-O(-H) fluid at 1 GPa and 1300°C then quenched to glasses. Samples were analyzed using an electron microprobe for major elements, ion microprobe for C-O-H volatiles, and Fourier transform infrared spectroscopy for molecular H<sub>2</sub>O, OH<sup>-</sup>, molecular CO<sub>2</sub>, and CO<sup>2-</sup><sub>3</sub>, CO<sub>2</sub> solubility was determined in hydrous andesite glasses and we found that H<sub>2</sub>O content has a strong influence on C-O speciation and total CO<sub>2</sub> solubility. In anhydrous andesite melts with ∼60 wt.% SiO<sub>2</sub>, total CO<sub>2</sub> solubility is ∼0.3 wt.% at 1300°C and 1 GPa and total CO<sub>2</sub> solubility increases by about 0.06 wt.% per wt.% of total H<sub>2</sub>O. As total H<sub>2</sub>O increases from ∼0 to ∼3.4 wt.%, molecular CO<sub>2</sub> decreases (from 0.07 ± 0.01 wt.% to ∼0.01 wt.%) and CO<sup>2-</sup><sub>3</sub> increases (from 0.24 ± 0.04 wt.% to 0.57 ± 0.09 wt.%). Molecular CO<sub>2</sub> increases as the calculated mole fraction of CO<sub>2</sub> in the fluid increases, showing Henrian behavior. In contrast, CO<sup>2+</sup><sub>3</sub> decreases as the calculated mole fraction of CO<sub>2</sub> in the fluid increases, indicating that CO<sup>2-</sup><sub>3</sub> solubility is strongly dependent on the availability of reactive oxygens in the melt. These findings have implications for CO<sub>2</sub> degassing. If substantial H<sub>2</sub>O is present, total CO<sub>2</sub> solubility is higher and CO<sub>2</sub> will degas at relatively shallow levels compared to a drier melt. Total CO<sub>2</sub> solubility was also examined in andesitic glasses with additional Ca, K, or Mg and low H<sub>2</sub>O contents (&lt;1 wt.%). We found that total CO<sub>2</sub> solubility is negatively correlated with (Si + Al) cation mole fraction and positively correlated with cations with large Gibbs free energy of decarbonation or high charge-to-radius ratios (e.g., Ca). Combining our andesite data with data from the literature, we find that molecular CO<sub>2</sub> is more abundant in highly polymerized melts with high ionic porosities (&gt;∼48.3%), and low nonbridging oxygen/tetrahedral oxygen (&lt;∼0.3). Carbonate dominates most silicate melts and is most abundant in depolymerized melts with low ionic porosities, high nonbridging oxygen/tetrahedral oxygen (&gt;∼0.3), and abundant cations with large Gibbs free energy of decarbonation or high charge-to-radius ratio. In natural silicate melt, the oxygens in the carbonate are likely associated with tetrahedral and network-modifying cations (including Ca, H, or H-bonds) or a combinations of those cations.</p>

Topics
  • impedance spectroscopy
  • Oxygen
  • melt
  • glass
  • reactive
  • glass
  • Fourier transform infrared spectroscopy
  • degassing