People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Murphy, Maria A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Sonoelectrochemistry of molecular and colloidal redox systems at carbon nanofiber-ceramic composite electrodes
Abstract
<p>An electrically conducting composite electrode consisting of a ceramic paper substrate, which has been densely coated with carbon nanofibers of ca. 100 nm diameter, is employed in the presence of 24 kHz (8 W cm<sup>-2</sup>) power ultrasound emitted from a glass horn system. The carbon composite electrode remains stable during prolonged use in the presence of ultrasound. Sonovoltammetric limiting currents for the reduction of Ru(NH<sub>3</sub>) <sub>6</sub><sup>3+</sup>, the oxidation of hydroquinone, and the reduction of colloidal hydrous iron oxide are reported. A comparison of sonovoltammograms obtained at a porous carbon nanofiber-ceramic composite electrode with those obtained at a conventional glassy carbon electrode shows that (i) the average mass transport limited current density at carbon nanofiber-ceramic composite electrodes is increased by approximately one order of magnitude, and (ii) due to the porous topography of the electrode surface, molecules remain resident within the diffusion layer for a longer period of time. Colloidal hydrous iron oxide is not reduced at conventional glassy carbon electrodes but can be reduced at the porous carbon nanofiber-ceramic composite electrode, presumably due to a more effective particle-carbon nanofiber electrode surface interaction.</p>