People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fonseca, Carlos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2021Durable electroless deposited Ni-P films on NBR for dynamic contacts. Characterization and tribological performancecitations
- 2021The Arch Electrode: A Novel Dry Electrode Concept for Improved Wearing Comfortcitations
- 2020Electroless Deposition of Ni-P Coatings on HNBR for Low Friction Rubber Sealscitations
- 2018Contact Pressure and Flexibility of Multipin Dry EEG Electrodescitations
- 2018Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethanecitations
- 2015Electrochemical and structural characterization of nanocomposite Ag-y:TiNx thin films for dry bioelectrodes: the effect of the N/Ti ratio and Ag contentcitations
- 2015Evolution of the functional properties of titanium–silver thin films for biomedical applications: Influence of in-vacuum annealingcitations
- 2015Development of polymer wicks for the fabrication of bio-medical sensorscitations
- 2014Electrochemical behaviour of nanocomposite Ag-x:TiN thin films for dry biopotential electrodescitations
- 2014Electrical characterization of Ag:TiN thin films produced by glancing angle depositioncitations
- 2014Ag:TiN nanocomposite thin films for bioelectrodes : the effect of annealing treatments on the electrical and mechanical behaviourcitations
- 2014Electrochemical behaviour of nanocomposite Agx:TiN thin filmsfor dry biopotential electrodescitations
- 2014Electrical characterizationofAg:TiNthin films producedbyglancing angle depositioncitations
- 2014Agy:TiNx thin films for dry biopotential electrodes: the effect of composition and structural changes on the electrical and mechanical behaviourscitations
- 2014Ag:TiN nanocomposite thin films for bioelectrodes: The effect of annealing treatments on the electrical and mechanical behaviorcitations
- 2013TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the filmscitations
- 2013TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the filmscitations
- 2013Structural and Morphological Changes In Ag:TiN Nanocomposite Films promoted by in-vacuum annealingcitations
- 2013Growth characteristics and properties of nanocomposite Ag-doped TiN thin films produced by glancing angle deposition
- 2013Influence of composition, bonding characteristics and microstructure on the properties of AlNxOy films
- 2013Influence of composition, bonding characteristics and microstructure on the electrochemical and optical stability of AlOxNy thin filmscitations
- 2013Nanocomposite Ag:TiN thin films for dry biopotential electrodescitations
- 2011Plasma surface activation and TiN coating of a TPV substrate for biomedical applicationscitations
- 2011Novel TiNx-based biosignal electrodes for electroencephalographycitations
- 2009The role of composition, morphology and crystalline structure in the electrochemical behaviour of TiNx thin films for dry electrode sensor materialscitations
- 2003Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applicationscitations
- 2001Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy
Abstract
This work aims at studying the electrochemical behaviour of titanium in the presence of an artificial biofluid containing H2O2, mimicing the situation, where the metal is implanted in the human body and hydrogen peroxide is generated by an inflammatory reaction. A phosphate buffered saline (PBS) solution and two PBS/H2O2 solutions containing 50 and 150 mM of H2O2 were used to simulate the body fluids. The behaviour of the metal was monitored as a function of time by electrochemical impedance spectroscopy (EIS) for three weeks. After one week, the PBS/H2O2 solutions were replaced by fresh PBS solutions in order to simulate the end of the inflammatory process and recovery of the system. All the experiments were carried out at a constant temperature of 37 degreesC. From the simulation of the experimental EIS spectra, it was concluded that the corrosion resistance of titanium is strongly affected by the presence of H2O2 and when the peroxide is removed, the metal displays a sharp resistance increase. Furthermore, the oxides formed in H2O2 are rougher and display higher ionic conductivities than the oxides Formed in the absence of peroxide. The study was complemented with potentiostatic experiments and scanning electron microscopy observation of the metal surfaces. (C) 2001 Elsevier Science Ltd. All lights reserved.