Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mernagh, Tp

  • Google
  • 1
  • 6
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Fluid bubbles in melt inclusions and pillow-rim glasses: high-temperature precursors to hydrothermal fluids?56citations

Places of action

Chart of shared publication
Crawford, Aj
1 / 1 shared
Portnyagin, Mv
1 / 1 shared
Gemmell, John Bruce
1 / 1 shared
Davidson, P.
1 / 5 shared
Kamenetsky, Vadim
1 / 2 shared
Shinjo, R.
1 / 1 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Crawford, Aj
  • Portnyagin, Mv
  • Gemmell, John Bruce
  • Davidson, P.
  • Kamenetsky, Vadim
  • Shinjo, R.
OrganizationsLocationPeople

article

Fluid bubbles in melt inclusions and pillow-rim glasses: high-temperature precursors to hydrothermal fluids?

  • Crawford, Aj
  • Mernagh, Tp
  • Portnyagin, Mv
  • Gemmell, John Bruce
  • Davidson, P.
  • Kamenetsky, Vadim
  • Shinjo, R.
Abstract

Hypotheses for the formation of many types of hydrothermal ore deposits often involve the direct contribution of magma-related fluids (e.g., Cu-Mo-Au porphyries) or their superimposition on barren hydrothermal cells (e.g., volcanic-hosted massive sulfide deposits). However, the chemical and phase compositions of such fluids remain largely unknown. We report preliminary results of a comprehensive study of fluid bubbles trapped inside glassy melt inclusions in primitive olivine phenocrysts and pillow-rim glasses from basaltic magmas from different tectonic environments, including mid-ocean ridges (Macquarie Island, SW Pacific and Mid-Atlantic Ridge 43A?N Fracture Zone), ocean islands (Hawaii) and a variety of modern and ancient backarc-island arc settings (eastern Manus Basin, Okinawa and Vanuatu Troughs, Troodos, New Caledonia and Hunter Ridge-Hunter Fracture Zone). Fluid bubbles from all localities, studied using electron microscopy with EDS and laser Raman spectroscopy, are composed of CO 2-(A? H 2O A? sulfur)-bearing vapor and contain significant amounts of amorphous (Na-K-Ca-Fe alumino-silicates and dissorded carbon) and crystalline phases. The crystals are represented mainly by carbonates (magnesite, calcite, ankerite, dolomite, siderite, nahcolite and rhodochrosite), sulfates (anhydrite, gypsum, barite and anglesite), and sulfides (pyrite, arsenopyrite, chalcopyrite and marcasite), though other minerals (brukite, apatite, halite, clinoenstatite, kalsilite, nepheline, amphibole and mica) may occur as well. We argue that chemical components (e.g., C, H, S, Cl, Si, Al, Na, K, Fe, Mn, Cr, Ca, Mg, Ba, Pb and Cu) that later formed precipitates in fluid bubbles were originally dissolved in the magmatic fluid, and were not supplied by host glasses or phenocrysts after entrapment. Magma-related fluid rich in dissolved metals and other non-volatile elements may be a potential precursor to ore-forming solutions. A? 2002 Elsevier Science B.V. All rights reserved.

Topics
  • mineral
  • amorphous
  • Carbon
  • inclusion
  • melt
  • crystalline phase
  • glass
  • glass
  • precipitate
  • forming
  • electron microscopy
  • Energy-dispersive X-ray spectroscopy
  • Raman spectroscopy
  • gypsum