Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Clementi, Giacomo

  • Google
  • 14
  • 39
  • 165

University of Perugia

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2023Material strategies to enhance the performance of piezoelectric energy harvesters based on lead-free materials12citations
  • 2023Material strategies to enhance the performance of piezoelectric energy harvesters based on lead-free materials12citations
  • 2023Material strategies to enhance the performance of piezoelectric energy harvesters based on lead-free materials12citations
  • 2022A smart battery free system for wireless condition monitoring using piezoelectric energy harvester2citations
  • 2022A low-cost alternative lead-free piezoelectric LiNbO3 films for micro-energy sourcescitations
  • 2022Self-Poled Heteroepitaxial Bi_(1-x) Dy_x FeO_3 Films with Promising Pyroelectric Properties6citations
  • 2022Self‐Poled Heteroepitaxial Bi(1−x)DyxFeO3 Films with Promising Pyroelectric Properties6citations
  • 2021LiNbO3 films – A low-cost alternative lead-free piezoelectric material for vibrational energy harvesters45citations
  • 2021A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoring22citations
  • 2021A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoring22citations
  • 2021Highly coupled and low frequency vibrational energy harvester using lithium niobate on silicon26citations
  • 2020LiNbO3 films : integration for piezoelectric and pyroelectric energy harvesting. ; LiNbO3 films : intégration pour la récupération de l'énergie piézoélectrique et pyroélectrique.citations
  • 2018Piezoelectric and pyroelectric energyharvesting from lithium niobate filmscitations
  • 2018Piezoelectric and pyroelectric energy harvesting from lithium niobate filmscitations

Places of action

Chart of shared publication
Margueron, Samuel
11 / 25 shared
Sousa Lopes Moreira, Arthur
1 / 1 shared
Malandrino, Graziella
5 / 14 shared
Micard, Quentin
5 / 9 shared
Mathur, Sanjay
3 / 36 shared
Dulmet, Bernard
8 / 8 shared
Ichangi, Arun
3 / 6 shared
Verma, Anjenya
3 / 3 shared
Ouhabaz, Merieme
8 / 8 shared
Bartasyte, Ausrine
13 / 29 shared
Boujnah, Sondes
3 / 4 shared
Labbaveettil, Ishamol
2 / 2 shared
De Sousa Lopes Moreira, Arthur
1 / 2 shared
Labbaveettil Basheer, Ishamol
1 / 2 shared
Moreira, Arthur Sousa Lopes
1 / 1 shared
Panayanthattaa, Namanu
1 / 1 shared
Montes, Laurent
2 / 2 shared
Dehollain, Catherine
3 / 3 shared
La Rosa, Roberto
3 / 3 shared
Costanza, Mario
4 / 4 shared
Bano, Edwige
3 / 5 shared
Basrour, Skandar
3 / 29 shared
Condorelli, Guglielmo G.
1 / 2 shared
Muralt, Paul
2 / 11 shared
Condorelli, Guglielmo Guido
1 / 8 shared
Lombardi, Giulia
1 / 1 shared
Imbaud, Joël
1 / 3 shared
Ballandras, Sylvain
1 / 9 shared
Suarez, Miguel Angel
4 / 5 shared
Lallart, Mickaël
1 / 8 shared
Gauthier-Manuel, Ludovic
2 / 3 shared
Lardet-Vieudrin, Franck
1 / 1 shared
Lebrasseur, Eric
1 / 3 shared
Rosa, Roberto La
1 / 1 shared
Panayanthatta, Namanu
2 / 4 shared
Montès, Laurent
1 / 4 shared
Belharet, Djaffar
1 / 1 shared
Bassignot, Florent
1 / 3 shared
Baron, Thomas
2 / 7 shared
Chart of publication period
2023
2022
2021
2020
2018

Co-Authors (by relevance)

  • Margueron, Samuel
  • Sousa Lopes Moreira, Arthur
  • Malandrino, Graziella
  • Micard, Quentin
  • Mathur, Sanjay
  • Dulmet, Bernard
  • Ichangi, Arun
  • Verma, Anjenya
  • Ouhabaz, Merieme
  • Bartasyte, Ausrine
  • Boujnah, Sondes
  • Labbaveettil, Ishamol
  • De Sousa Lopes Moreira, Arthur
  • Labbaveettil Basheer, Ishamol
  • Moreira, Arthur Sousa Lopes
  • Panayanthattaa, Namanu
  • Montes, Laurent
  • Dehollain, Catherine
  • La Rosa, Roberto
  • Costanza, Mario
  • Bano, Edwige
  • Basrour, Skandar
  • Condorelli, Guglielmo G.
  • Muralt, Paul
  • Condorelli, Guglielmo Guido
  • Lombardi, Giulia
  • Imbaud, Joël
  • Ballandras, Sylvain
  • Suarez, Miguel Angel
  • Lallart, Mickaël
  • Gauthier-Manuel, Ludovic
  • Lardet-Vieudrin, Franck
  • Lebrasseur, Eric
  • Rosa, Roberto La
  • Panayanthatta, Namanu
  • Montès, Laurent
  • Belharet, Djaffar
  • Bassignot, Florent
  • Baron, Thomas
OrganizationsLocationPeople

article

LiNbO3 films – A low-cost alternative lead-free piezoelectric material for vibrational energy harvesters

  • Bartasyte, Ausrine
  • Margueron, Samuel
  • Lombardi, Giulia
  • Imbaud, Joël
  • Ballandras, Sylvain
  • Dulmet, Bernard
  • Suarez, Miguel Angel
  • Lallart, Mickaël
  • Gauthier-Manuel, Ludovic
  • Clementi, Giacomo
  • Lardet-Vieudrin, Franck
  • Lebrasseur, Eric
Abstract

Lead-free lithium niobate (LiNbO3) piezoelectric transducer is considered as a substitute to lead-based solutions for vibrational energy scavenging applications. Taking into account the much lower dielectric constant of LiNbO3 crystal compared to conventional piezoceramics (for instance PZT), we implement, in a global optimization approach, a thick single crystal film on silicon substrate with optimized clamped capacitance for better impedance-matching conditions. We design a piezoelectric cantilever based on (YXl)/36° LiNbO3 cut, enhancing the output voltage to achieve piezoelectric transducer performance compatible with harvesting device standards. For a cantilever with bending first resonant frequency of 1.14 kHz, an output power up to 380 μW is achieved, yielding a power density of 8.26 μW.mm−2, therefore comparable to lead-based and -free piezoelectric harvesters, while featuring a widely used material with well-established production process (hence lowering the cost for instance). The harvesting capabilities of the device allows starting a sensor node (from zero energy initial conditions) after 9 s only and then maintaining the possibility of sending data every 2 s (each transmission event consuming approximately 420 μJ) under continuous excitation.

Topics
  • density
  • impedance spectroscopy
  • single crystal
  • dielectric constant
  • Silicon
  • Lithium
  • piezoelectric material