Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Carvajal-Castrillón, Alejandro

  • Google
  • 2
  • 5
  • 100

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognition96citations
  • 2017Structural health monitoring on an unmanned aerial vehicle wing's beam based on fiber Bragg gratings and pattern recognition techniques4citations

Places of action

Chart of shared publication
Alvarez-Montoya, Joham
2 / 7 shared
Sierra, Julian
2 / 11 shared
Fernandez, Ferney Orlando Amaya
1 / 2 shared
Niño Navia, Juliana Andrea
1 / 1 shared
Betancur, Leonardo
1 / 1 shared
Chart of publication period
2020
2017

Co-Authors (by relevance)

  • Alvarez-Montoya, Joham
  • Sierra, Julian
  • Fernandez, Ferney Orlando Amaya
  • Niño Navia, Juliana Andrea
  • Betancur, Leonardo
OrganizationsLocationPeople

article

In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognition

  • Carvajal-Castrillón, Alejandro
  • Alvarez-Montoya, Joham
  • Sierra, Julian
Abstract

<p>Aiming to provide more efficient, lightweight structures, composite materials are being extensively used in aerospace vehicles. As the failure mechanisms of these materials are complex, damage detection becomes challenging, requiring advanced techniques for assessing structural integrity and maintaining aircraft safety. In this context, Structural Health Monitoring (SHM) seeks for integrating sensors into the structures in a way that Nondestructive Testing (NDT) is implemented continuously. One promising approach is to use Fiber Optic Sensors (FOS) to acquire strain signals, taking advantages of their capabilities over conventional sensors. Despite several works have developed Health and Usage Monitoring Systems (HUMS) using FOS for performing in-flight SHM in aircraft structures, automatic damage detection using the acquired signals has not been achieved in a robust way against environmental and operational variability, in all flight stages or considering different types of damages. In this work, a HUMS was developed and implemented in an Unmanned Aerial Vehicle (UAV) based on 20 Fiber Bragg Gratings (FBGs) embedded into the composite front spar of the aircraft's wing, a miniaturized data acquisition subsystem for gathering strain signals and a wireless transmission subsystem for remote sensing. The HUMS was tested in 16 flights, six of them were carried out with the pristine structure and the remaining after inducing different artificial damages. The in-flight data were used to validate a previously developed damage detection methodology based on strain field pattern recognition, or strain mapping, which utilizes machine learning algorithms, specifically a Self-Organizing Map (SOM)-based procedure for clustering operational conditions and Principal Component Analysis (PCA) in conjunction with damage indices for final classification. The performance of the damage detection demonstrated a highest accuracy of 0.981 and a highest F<sub>1</sub> score of 0.978. As a main contribution, this work implements in-flight strain monitoring, remote sensing and automatic damage detection in an operating composite aircraft structure.</p>

Topics
  • impedance spectroscopy
  • composite
  • clustering
  • machine learning