People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yang, Mingshi
University of Copenhagen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Leucine as a Moisture-Protective Excipient in Spray-Dried Protein/Trehalose Formulationcitations
- 2024Compaction behavior of freeze-dried and spray-dried trypsin/lactose particulate systems
- 2020Carboxymethyl fenugreek galactomannan-g-poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide)-clay based pH/temperature-responsive nanocomposites as drug-carrierscitations
- 2017Investigation of nanocarriers and excipients for preparation of nanoembedded microparticlescitations
- 2017The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous matscitations
- 2017The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous matscitations
- 2013Designing CAF-adjuvanted dry powder vaccinescitations
Places of action
Organizations | Location | People |
---|
article
Leucine as a Moisture-Protective Excipient in Spray-Dried Protein/Trehalose Formulation
Abstract
<p>The incorporation of leucine (Leu), a hydrophobic amino acid, into pharmaceutically relevant particles via spray-drying can improve the physicochemical and particulate properties, stability, and ultimately bioavailability of the final product. More specifically, Leu has been proposed to form a shell on the surface of spray-dried (SD) particles. The aim of this study was to explore the potential of Leu in the SD protein/trehalose (Tre) formulation to control the water uptake and moisture-induced recrystallization of amorphous Tre, using lysozyme (LZM) as a model protein. LZM/Tre (1:1, w/w) was dissolved in water with varied amounts of Leu (0 - 40%, w/w) and processed by spray-drying. The solid form, residual moisture content (RMC), hygroscopicity, and morphology of SD LZM/Tre/Leu powders were evaluated, before and after storage under 22°C/55% RH conditions for 90 and 180 days. The X-ray powder diffraction results showed that Leu was in crystalline form when the amount of Leu in the formulation was at least 20% (w/w). Thermo-gravimetric analysis and scanning electron microscopy results showed that 0%, 5%, and 10% (w/w) Leu formulations led to comparable RMC and raisin-like round particles. In contrast, higher Leu contents resulted in a lower RMC and increased surface corrugation of the SD particles. Dynamic vapor sorption analysis showed that partial recrystallization of amorphous Tre to crystalline Tre·dihydrate occurred in the 0% Leu formulation. However, adding as little as 5% (w/w) Leu inhibited this recrystallization during the water sorption/desorption cycle. In addition, after storage, the formulations with higher Leu contents showed reduced water uptake. Instead of observing recrystallization of amorphous Tre in 0%, 5%, and 10% (w/w) Leu formulations, recrystallization of amorphous Leu was noted in the 5% and 10% (w/w) Leu formulations after storage. In summary, our study demonstrated that the addition of Leu has the potential to reduce water uptake and inhibit moisture-induced recrystallization of amorphous Tre in the SD protein/Tre powder system.</p>