Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sato, T.

  • Google
  • 12
  • 76
  • 981

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2021A preoperative predictive study of advantages of airway changes after maxillomandibular advancement surgery using computational fluid dynamics analysis.1citations
  • 2020Magnetic-field-induced topological phase transition in Fe-doped (Bi,Sb)2 S e3 heterostructures21citations
  • 2016Application of Three-Dimensionally Printed Probe and Reservoir to Critical Micelle Concentration Determination by Microvolume Surface Tension Measurement.2citations
  • 2016Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As26citations
  • 2015CRP 1846C>T Genetic Polymorphism Is Associated with Lymph Node Metastasis and/or Severe Lymphatic Invasion in Endometrial Cancer.13citations
  • 2009Fermi surface nesting induced strong pairing in iron-based superconductors333citations
  • 2009Structure and stability of high pressure synthesized Mg-TM hydrides (TM=Ti, Zr, Hf, V, Nb and Ta) as possible new hydrogen rich hydrides for hydrogen storage78citations
  • 2007Influence of ion irradiation effects on the hydriding behavior of nanocrystalline Mg–Ni films10citations
  • 2001Synthesis, HRTEM and electron diffraction studies of B/N-doped, C and BN nanotubes40citations
  • 2000Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles220citations
  • 2000Ropes of BN multi-walled nanotubes113citations
  • 2000MoO3 -promoted synthesis of multi-walled BN nanotubes from C nanotube templates124citations

Places of action

Chart of shared publication
Shinozuka, Keiji
1 / 1 shared
Tonogi, M.
1 / 1 shared
Tanuma, T.
1 / 1 shared
Suzuki, M.
1 / 6 shared
Azaki, H.
1 / 1 shared
Yamagata, K.
1 / 1 shared
Himejima, A.
1 / 1 shared
Ogisawa, S.
1 / 1 shared
Dietl, Tomasz
2 / 262 shared
Nojima, T.
1 / 1 shared
Nomura, K.
1 / 2 shared
Tsukazaki, A.
1 / 9 shared
Mazur, G. P.
1 / 6 shared
Fujiwara, K.
1 / 2 shared
Satake, Y.
1 / 1 shared
Shiogai, J.
1 / 1 shared
Souma, S.
2 / 2 shared
Kimura, S.
1 / 1 shared
Awaji, S.
1 / 3 shared
Takahashi, H.
1 / 15 shared
Taira, H.
1 / 1 shared
Horiuchi, S.
1 / 1 shared
Mukai, K.
1 / 6 shared
Choda, Naoki
1 / 1 shared
Matsukura, F.
1 / 23 shared
Ohno, H.
1 / 25 shared
Chen, L.
1 / 32 shared
Takahashi, T.
2 / 9 shared
Oszwaldowski, R.
1 / 3 shared
Kumazawa, Y.
1 / 1 shared
Sato, W.
1 / 1 shared
Sato, A.
1 / 9 shared
Sato, N.
1 / 3 shared
Terada, Y.
1 / 8 shared
Tamura, Daisuke
1 / 1 shared
Kato, A.
1 / 9 shared
Takahashi, K.
1 / 3 shared
Sugawara, T.
1 / 1 shared
Miura, M.
1 / 4 shared
Motoyama, S.
1 / 3 shared
Miura, H.
1 / 10 shared
Makino, Kenichi
1 / 1 shared
Nanjo, H.
1 / 1 shared
Shimizu, D.
1 / 1 shared
Fujita, K.
1 / 5 shared
Kito, M.
1 / 1 shared
Kumagai, J.
1 / 1 shared
Li, L. J.
1 / 1 shared
Ding, H.
1 / 4 shared
Cao, G. H.
1 / 2 shared
Richard, P.
1 / 2 shared
Terashima, K.
1 / 1 shared
Sekiba, Y.
1 / 1 shared
Bowen, J. H.
1 / 1 shared
Kawahara, T.
1 / 1 shared
Xu, Y.-M.
1 / 1 shared
Nakayama, K.
1 / 2 shared
Xu, Z.-A.
1 / 1 shared
Taniguchi, Takashi
1 / 58 shared
Notten, Phl Peter
1 / 18 shared
Kyoi, D.
1 / 1 shared
Yusa, H.
1 / 1 shared
Sakai, Tetsuo
1 / 2 shared
Noréus, D.
1 / 1 shared
Moser, D.
1 / 2 shared
Kalisvaart, Wp Willem Peter
1 / 5 shared
Kitamura, N.
1 / 2 shared
Bull, Dj
1 / 3 shared
Templier, Claude
1 / 6 shared
Wirth, Emmanuel
1 / 2 shared
Milčius, Darius
1 / 29 shared
Pranevičius, Liudas
1 / 3 shared
Noreus, D.
1 / 1 shared
Bando, Y.
4 / 21 shared
Kurashima, K.
4 / 6 shared
Bourgeois, L.
1 / 1 shared
Chart of publication period
2021
2020
2016
2015
2009
2007
2001
2000

Co-Authors (by relevance)

  • Shinozuka, Keiji
  • Tonogi, M.
  • Tanuma, T.
  • Suzuki, M.
  • Azaki, H.
  • Yamagata, K.
  • Himejima, A.
  • Ogisawa, S.
  • Dietl, Tomasz
  • Nojima, T.
  • Nomura, K.
  • Tsukazaki, A.
  • Mazur, G. P.
  • Fujiwara, K.
  • Satake, Y.
  • Shiogai, J.
  • Souma, S.
  • Kimura, S.
  • Awaji, S.
  • Takahashi, H.
  • Taira, H.
  • Horiuchi, S.
  • Mukai, K.
  • Choda, Naoki
  • Matsukura, F.
  • Ohno, H.
  • Chen, L.
  • Takahashi, T.
  • Oszwaldowski, R.
  • Kumazawa, Y.
  • Sato, W.
  • Sato, A.
  • Sato, N.
  • Terada, Y.
  • Tamura, Daisuke
  • Kato, A.
  • Takahashi, K.
  • Sugawara, T.
  • Miura, M.
  • Motoyama, S.
  • Miura, H.
  • Makino, Kenichi
  • Nanjo, H.
  • Shimizu, D.
  • Fujita, K.
  • Kito, M.
  • Kumagai, J.
  • Li, L. J.
  • Ding, H.
  • Cao, G. H.
  • Richard, P.
  • Terashima, K.
  • Sekiba, Y.
  • Bowen, J. H.
  • Kawahara, T.
  • Xu, Y.-M.
  • Nakayama, K.
  • Xu, Z.-A.
  • Taniguchi, Takashi
  • Notten, Phl Peter
  • Kyoi, D.
  • Yusa, H.
  • Sakai, Tetsuo
  • Noréus, D.
  • Moser, D.
  • Kalisvaart, Wp Willem Peter
  • Kitamura, N.
  • Bull, Dj
  • Templier, Claude
  • Wirth, Emmanuel
  • Milčius, Darius
  • Pranevičius, Liudas
  • Noreus, D.
  • Bando, Y.
  • Kurashima, K.
  • Bourgeois, L.
OrganizationsLocationPeople

article

Application of Three-Dimensionally Printed Probe and Reservoir to Critical Micelle Concentration Determination by Microvolume Surface Tension Measurement.

  • Takahashi, H.
  • Sato, T.
  • Taira, H.
  • Horiuchi, S.
  • Mukai, K.
  • Choda, Naoki
Abstract

It is important to determine a critical micelle concentration (CMC) of a surfactant in a protein formulation for stabilizing the protein at maximum by preventing it from interfacial denaturation. There are several techniques for CMC determination. Among them, surface tensiometry is the most common approach because this has a long history and much data at many research fields. However, large amount of sample solution is usually required for the measurement (e.g., more than 1 mL is necessary when a standard reservoir like a glass petri dish is used). This is one of the hurdles for protein formulators because only a small amount of protein could be used at the early-stage development. In this research, we tried to minimize the required amount of sample solution for surface tension measurement by developing appropriate probe and reservoir using a three-dimensional printer (3D printer). The advantages and capabilities of 3D printer are (1) to control the shape and size of the printed material precisely, (2) to change the figure freely, and (3) to prepare the prototype quickly. After the experiments and thereby the refinement of probe as well as reservoir, we found that CMCs of polysorbate 20, polysorbate 80, and poloxamer 188 in water and protein formulations could be precisely detected using a probe 0.5 mm in diameter and small reservoir with a pocket of 7.5 mm in diameter/0.25 mm in depth which were made by a 3D printer. Furthermore, the required sample solution per each measurement could be reduced to 80 μL, which means more than 90% reduction against a standard reservoir.

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • glass
  • glass
  • surfactant
  • tensiometry