People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bøtker, Johan Peter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Co-administration of Intravenous Drugscitations
- 2020Fabrication of Mucoadhesive Buccal Films for Local Administration of Ketoprofen and Lidocaine Hydrochloride by Combining Fused Deposition Modeling and Inkjet Printingcitations
- 2020Exploring the Complexity of Processing-Induced Dehydration during Hot Melt Extrusion Using In-Line Raman Spectroscopycitations
- 2019Roadmap to 3D printed oral pharmaceutical dosage formscitations
- 2016Oscillatory Shear Rheology in Examining the Drug-Polymer Interactions Relevant in Hot Melt Extrusioncitations
- 2015Three-Dimensional Printing of Drug-Eluting Implantscitations
- 2015Rheology as a tool for evaluation of melt processability of innovative dosage formscitations
- 2012Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routescitations
- 2011Assessment of crystalline disorder in cryo-milled samples of indomethacin using atomic pair-wise distribution functionscitations
Places of action
Organizations | Location | People |
---|
article
Oscillatory Shear Rheology in Examining the Drug-Polymer Interactions Relevant in Hot Melt Extrusion
Abstract
<p>The flow properties of drug-polymer mixtures have a significant influence on their processability when using techniques such as hot melt extrusion (HME). Suitable extrusion temperature and screw speed to be used in laboratory scale HME were evaluated for mixtures containing 30% of paracetamol (PRC), ibuprofen (IBU), or indomethacin (IND), and 70% of polyethylene oxide, by using small amplitude oscillatory shear rheology. The initial evaluation of the drug:polyethylene oxide solubility was estimated by differential scanning calorimetry of the physical mixtures containing a wide range of weight fractions of the drug substances. Consecutively, the mixtures were extruded, and the maximum plasticizing weight fraction of each drug was determined by means of rheological measurements. IBU was found to have an efficient plasticizing functionality, decreasing the viscosity of the mixtures even above its apparent saturation solubility, whereas IND and PRC initially lowered the viscosity of the mixture slightly but increased it significantly with increasing drug load. The main reason for the enhanced plasticization effect seems to be the lower melting temperature of IBU, which is closer to the used HME temperature, compared to PRC and IND. This study highlights the importance of rheological investigation in understanding the drug-polymer interactions in melt processing.</p>