Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhao, Jiashang

  • Google
  • 6
  • 60
  • 173

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal–halide perovskites15citations
  • 2023Crystallization Process for High-Quality Cs0.15FA0.85PbI2.85Br0.15Film Deposited via Simplified Sequential Vacuum Evaporation10citations
  • 2022Traps in the spotlight16citations
  • 2022Traps in the spotlight: How traps affect the charge carrier dynamics in Cs2AgBiBr6 perovskitecitations
  • 2022Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy66citations
  • 2022Predicting solar cell performance from terahertz and microwave spectroscopy66citations

Places of action

Chart of shared publication
Wolff, Christian Michael
1 / 15 shared
Othman, Mostafa
1 / 5 shared
Wirtz, Tom
1 / 10 shared
Chernyshov, Dmitry
1 / 23 shared
Tabean, Saba
1 / 2 shared
Hessler-Wyser, Aïcha
1 / 14 shared
Futscher, Moritz H.
1 / 15 shared
Jacobs, Daniel A.
1 / 5 shared
Züfle, Simon
1 / 3 shared
Ballif, Christophe
1 / 23 shared
Kuba, Austin G.
1 / 3 shared
Zeiske, Stefan
1 / 8 shared
Jenatsch, Sandra
1 / 7 shared
Savenije, Tom J.
4 / 36 shared
Ruhstaller, Beat
1 / 12 shared
Eswara, Santhana
1 / 4 shared
Jaffrès, Anaël
1 / 1 shared
Jeangros, Quentin
1 / 16 shared
Armin, Ardalan
1 / 9 shared
Kerklaan, Mels
1 / 2 shared
Ibrahim, Bahiya
1 / 1 shared
Mazzarella, Luana
1 / 9 shared
Bannenberg, Lars
1 / 12 shared
Wang, Haoxu
1 / 1 shared
Isabella, Olindo
1 / 18 shared
Yan, Jin
1 / 2 shared
Thieme, Jos
2 / 5 shared
Phadke, Sohan A.
2 / 2 shared
Hutter, Eline M.
2 / 33 shared
Caselli, Valentina M.
2 / 12 shared
Jöbsis, Huygen J.
2 / 7 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Wolff, Christian Michael
  • Othman, Mostafa
  • Wirtz, Tom
  • Chernyshov, Dmitry
  • Tabean, Saba
  • Hessler-Wyser, Aïcha
  • Futscher, Moritz H.
  • Jacobs, Daniel A.
  • Züfle, Simon
  • Ballif, Christophe
  • Kuba, Austin G.
  • Zeiske, Stefan
  • Jenatsch, Sandra
  • Savenije, Tom J.
  • Ruhstaller, Beat
  • Eswara, Santhana
  • Jaffrès, Anaël
  • Jeangros, Quentin
  • Armin, Ardalan
  • Kerklaan, Mels
  • Ibrahim, Bahiya
  • Mazzarella, Luana
  • Bannenberg, Lars
  • Wang, Haoxu
  • Isabella, Olindo
  • Yan, Jin
  • Thieme, Jos
  • Phadke, Sohan A.
  • Hutter, Eline M.
  • Caselli, Valentina M.
  • Jöbsis, Huygen J.
OrganizationsLocationPeople

article

Traps in the spotlight

  • Savenije, Tom J.
  • Thieme, Jos
  • Phadke, Sohan A.
  • Zhao, Jiashang
  • Hutter, Eline M.
  • Caselli, Valentina M.
  • Jöbsis, Huygen J.
Abstract

<p>Suitable optoelectronic properties of lead halide perovskites make these materials interesting semiconductors for many applications. Toxic lead can be substituted by combining monovalent and trivalent cations, such as in Cs<sub>2</sub>AgBiBr<sub>6</sub>. However, efficiencies of Cs<sub>2</sub>AgBiBr<sub>6</sub>-based photovoltaics are still modest. To elucidate the loss mechanisms, in this report, we investigate charge dynamics in Cs<sub>2</sub>AgBiBr<sub>6</sub> films by double-pulse excitation time-resolved microwave conductivity (DPE-TRMC). By exciting the sample with two laser pulses with identical wavelengths, we found a clear photoconductance enhancement induced by the second pulse even 30 μs after the first laser pulse. Modeling the DPE-TRMC results, complemented by photoluminescence and transient absorption, we reveal the presence of deep emissive electron traps, while shallow hole trapping is responsible for the long-lived transient absorption signals. These long-lived carriers offer interesting possibilities for X-ray detectors or photocatalysis. The DPE-TRMC methodology offers unique insight into the times involved in charge trapping and depopulation in Cs<sub>2</sub>AgBiBr<sub>6</sub>.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • photoluminescence
  • semiconductor
  • time-resolved microwave conductivity