People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhao, Jiashang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal–halide perovskitescitations
- 2023Crystallization Process for High-Quality Cs0.15FA0.85PbI2.85Br0.15Film Deposited via Simplified Sequential Vacuum Evaporationcitations
- 2022Traps in the spotlightcitations
- 2022Traps in the spotlight: How traps affect the charge carrier dynamics in Cs2AgBiBr6 perovskite
- 2022Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopycitations
- 2022Predicting solar cell performance from terahertz and microwave spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Traps in the spotlight
Abstract
<p>Suitable optoelectronic properties of lead halide perovskites make these materials interesting semiconductors for many applications. Toxic lead can be substituted by combining monovalent and trivalent cations, such as in Cs<sub>2</sub>AgBiBr<sub>6</sub>. However, efficiencies of Cs<sub>2</sub>AgBiBr<sub>6</sub>-based photovoltaics are still modest. To elucidate the loss mechanisms, in this report, we investigate charge dynamics in Cs<sub>2</sub>AgBiBr<sub>6</sub> films by double-pulse excitation time-resolved microwave conductivity (DPE-TRMC). By exciting the sample with two laser pulses with identical wavelengths, we found a clear photoconductance enhancement induced by the second pulse even 30 μs after the first laser pulse. Modeling the DPE-TRMC results, complemented by photoluminescence and transient absorption, we reveal the presence of deep emissive electron traps, while shallow hole trapping is responsible for the long-lived transient absorption signals. These long-lived carriers offer interesting possibilities for X-ray detectors or photocatalysis. The DPE-TRMC methodology offers unique insight into the times involved in charge trapping and depopulation in Cs<sub>2</sub>AgBiBr<sub>6</sub>.</p>