People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Colella, Silvia
University of Salento
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Reaction Mechanism of Hydrogen Generation and Nitrogen Fixation at Carbon Nitride/Double Perovskite Heterojunctionscitations
- 2024Sustainable and cost-effective edge oxidized graphite/PEDOT:PSS nanocomposites with improved electrical conductivitycitations
- 2023Role of Chain Length on (CnH2n+1NH3)2PbX4 (n=6, 8, 10, 12, 14, 16; X=Br and I) 2D Metal Halide Perovskites Physical Properties and Hydrophobicity
- 2023Record Stability for Fully Passive Perovskite‐Based X‐Ray Detectors Through the Use of Starch as Templating Agentcitations
- 2023Plasma‐Driven Atomic‐Scale Tuning of Metal Halide Perovskite Surfaces: Rationale and Photovoltaic Applicationcitations
- 2023Incorporation of functional polymers into metal halide perovskite thin-films: from interactions in solution to crystallizationcitations
- 2023Blocking wide bandgap mixed halide perovskites’ decomposition through polymer inclusioncitations
- 2023Air- and water-stable and photocatalytically active germanium-based 2D perovskites by organic spacer engineeringcitations
- 2023Air- and water-stable and photocatalytically active germanium-based 2D perovskites by organic spacer engineeringcitations
- 2022Polymer-based nano-inks for solar cells
- 2021Inclusion of 2d transition metal dichalcogenides in perovskite inks and their influence on solar cell performancecitations
- 2021Polymer-Assisted Single-Step Slot-Die Coating of Flexible Perovskite Solar Cells at Mild Temperature from Dimethyl Sulfoxidecitations
- 2021Polymer-Assisted Single-Step Slot-Die Coating of Flexible Perovskite Solar Cells at Mild Temperature from Dimethyl Sulfoxidecitations
- 2021One-step polymer assisted roll-to-roll gravure-printed perovskite solar cells without using anti-solvent bathingcitations
- 2019Optimizing the Interface between Hole Transporting Material and Nanocomposite for Highly Efficient Perovskite Solar Cellscitations
- 2018Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cellscitations
- 2018Direct or indirect bandgap in hybrid lead halide perovskites?citations
- 2018Connecting the solution chemistry of PbI2and MAI: A cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskitescitations
- 2018GO/glucose/PEDOT:PSS ternary nanocomposites for flexible supercapacitorscitations
- 2018Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-offcitations
- 2018Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-offcitations
- 2017GO/PEDOT: PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical propertiescitations
- 2017Rheological and physical characterization of PEDOT: PSS/graphene oxide nanocomposites for perovskite solar cellscitations
- 2016UV Reduced Graphene Oxide PEDOT:PSS Nanocomposite for Perovskite Solar Cellscitations
- 2015Implications of TiO2 surface functionalization on polycrystalline mixed halide perovskite films and photovoltaic devicescitations
- 2015Multiscale morphology design of hybrid halide perovskites through a polymeric template
- 2015Multiscale morphology design of hybrid halide perovskites through a polymeric templatecitations
- 2015Growing perovskite into polymers for easy-processable optoelectronic devicescitations
- 2015Implications of TiO2surface functionalization on polycrystalline mixed halide perovskite films and photovoltaic devicescitations
Places of action
Organizations | Location | People |
---|
article
One-step polymer assisted roll-to-roll gravure-printed perovskite solar cells without using anti-solvent bathing
Abstract
High-throughput manufacturing of hybrid halide perovskite solar cells is the next challenge before they enter the market. An anti-solvent bath is generally required to control the perovskite film assembly starting from precursors in solution. Although an anti-solvent bath has proven feasible for roll-to-roll deposition, it implies an undoubted increased complexity of the manufacturing line, meaning enhanced costs for the process itself and anti-solvent disposal. Here, we take advantage of the use of a starch polymer as a rheological modifier in perovskite precursor solutions to avoid the anti-solvent bath. Starch allows for control of the perovskite growth process in one step and reach of required viscosities for gravure-printing technique with ∼50% less of the raw precursor materials. This combined with simplified processing conditions are expected to drastically lower the costs of perovskite material production. We demonstrate that this approach can be upscaled to roll-to-roll gravure printing of flexible solar cells, reaching a maximum power conversion efficiency close to 10%.