Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tebyetekerwa, Mike

  • Google
  • 4
  • 36
  • 62

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Recent advances in MXene/elastomer nanocomposites: Synthesis, properties and applications5citations
  • 2021Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching31citations
  • 2021Investigation of Gallium-Boron Spin-On Codoping for poly-Si/SiOx Passivating Contacts3citations
  • 2020Hydrogenation Mechanisms of Poly-Si/SiOx Passivating Contacts by Different Capping Layers23citations

Places of action

Chart of shared publication
Abdolazizi, Amir
1 / 2 shared
Bai, Ruixiang
1 / 2 shared
Lei, Zhenkun
1 / 2 shared
Naidelage, Buddhika Sinhasana Pattale Siriwedi
1 / 1 shared
Ponnuru, Hanisha
1 / 1 shared
Kondarage, Yashodha
1 / 2 shared
Gedara, Ishara Madhushankha Wijesinghe Hangidi
1 / 3 shared
Chathuranga, Hiran
1 / 2 shared
Wimalachandra, Sajani
1 / 2 shared
Jones, Timothy W.
1 / 2 shared
Bing, Jueming
1 / 2 shared
Kalantar-Zadeh, Kourosh
1 / 20 shared
Mayyas, Mohannad
1 / 9 shared
Ekins-Daukes, N. J.
1 / 4 shared
Li, Yong
1 / 6 shared
Nielsen, Michael P.
1 / 2 shared
Cho, Yongyoon
1 / 1 shared
Zheng, Jianghui
1 / 4 shared
Mckenzie, David R.
1 / 14 shared
Yuan, Lin
1 / 1 shared
Nguyen, Hieu T.
3 / 4 shared
Wilson, Gregory J.
1 / 5 shared
Tang, Jianbo
1 / 12 shared
Yang, Terry Chien-Jen
1 / 2 shared
Tang, Shi
1 / 1 shared
Ho-Baillie, Anita
1 / 16 shared
Phang, Sieu Pheng
1 / 11 shared
Stuckelberger, Josua
1 / 1 shared
Cuevas, Andres
2 / 4 shared
Yan, Di
2 / 8 shared
Young, Matthew
2 / 5 shared
Al-Jassim, Mowafak
2 / 5 shared
Macdonald, Daniel
2 / 10 shared
Truong, Thien N.
2 / 3 shared
Le, Tien T.
1 / 2 shared
Chen, Wenhao
1 / 2 shared
Chart of publication period
2024
2021
2020

Co-Authors (by relevance)

  • Abdolazizi, Amir
  • Bai, Ruixiang
  • Lei, Zhenkun
  • Naidelage, Buddhika Sinhasana Pattale Siriwedi
  • Ponnuru, Hanisha
  • Kondarage, Yashodha
  • Gedara, Ishara Madhushankha Wijesinghe Hangidi
  • Chathuranga, Hiran
  • Wimalachandra, Sajani
  • Jones, Timothy W.
  • Bing, Jueming
  • Kalantar-Zadeh, Kourosh
  • Mayyas, Mohannad
  • Ekins-Daukes, N. J.
  • Li, Yong
  • Nielsen, Michael P.
  • Cho, Yongyoon
  • Zheng, Jianghui
  • Mckenzie, David R.
  • Yuan, Lin
  • Nguyen, Hieu T.
  • Wilson, Gregory J.
  • Tang, Jianbo
  • Yang, Terry Chien-Jen
  • Tang, Shi
  • Ho-Baillie, Anita
  • Phang, Sieu Pheng
  • Stuckelberger, Josua
  • Cuevas, Andres
  • Yan, Di
  • Young, Matthew
  • Al-Jassim, Mowafak
  • Macdonald, Daniel
  • Truong, Thien N.
  • Le, Tien T.
  • Chen, Wenhao
OrganizationsLocationPeople

article

Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching

  • Jones, Timothy W.
  • Bing, Jueming
  • Kalantar-Zadeh, Kourosh
  • Mayyas, Mohannad
  • Ekins-Daukes, N. J.
  • Li, Yong
  • Nielsen, Michael P.
  • Cho, Yongyoon
  • Zheng, Jianghui
  • Mckenzie, David R.
  • Yuan, Lin
  • Nguyen, Hieu T.
  • Tebyetekerwa, Mike
  • Wilson, Gregory J.
  • Tang, Jianbo
  • Yang, Terry Chien-Jen
  • Tang, Shi
  • Ho-Baillie, Anita
Abstract

<p>The power conversion efficiency (PCE) of metal halide perovskite solar cells (PSCs) has improved dramatically from 3.8% to 25.5% in only a decade. Gas quenching is a desirable method for fabricating high-efficiency cells as it does not consume antisolvents and is compatible with large-area deposition methods such as doctor blading and slot-die coating. To further improve PCEs for gas-quenched PSCs, here, we develop complementary bulk and surface passivation strategies by incorporating potassium iodide (KI) in the perovskite precursor and applying n-hexylammonium bromide (HABr) to the perovskite surface. We show that (1) KI induces a spatial-compositional change, improving grain boundary properties; (2) KI and HABr reduce traps, especially at levels close to the mid-gap; and (3) HABr greatly improves the built-in potential of the device, thereby improving voltage output. The champion device achieves a steady-state PCE of 23.6% with a V<sub>OC</sub> of 1.23V, which is, to the best of our knowledge, the highest for PSC by gas quenching to date.</p>

Topics
  • Deposition
  • perovskite
  • impedance spectroscopy
  • surface
  • grain
  • grain boundary
  • Potassium
  • power conversion efficiency
  • quenching