People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zia, Abdul Wasy
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Innovative Tin and hard carbon architecture for enhanced stability in lithium-ion battery anodescitations
- 2024Sputtered Hard Carbon for High-Performance Energy Storage Batteries
- 2024Designing Molybdenum Trioxide and Hard Carbon Architecture for Stable Lithium‐Ion Battery Anodescitations
- 2024Wear-resistant and adherent nanodiamond composite thin film for durable and sustainable silicon carbide mechanical seals.citations
- 2024Circular usage of waste cooking oil towards green electrical discharge machining process with lower carbon emissionscitations
- 2024Oxygen concentration – a governing parameter for microstructural tailoring of duplex AlCrSiON coatings for superior mechanical, tribological, and anti-corrosion performancecitations
- 2024Wear-resistant and Adherent Nanodiamond Composite Thin Film for Durable and Sustainable Silicon Carbide Mechanical Sealscitations
- 2024Role of scandium addition to microstructure, corrosion resistance, and mechanical properties of AA7085/ZrB2+Al2O3 compositescitations
- 2024Precision depth-controlled isolated silver nanoparticle-doped diamond-like carbon coatings with enhanced ion release, biocompatibility, and mechanical performancecitations
- 2023Soft diamond-like carbon coatings with superior biocompatibility for medical applicationscitations
- 2023Multi-layered Sn and Hard Carbon Architectures for Long-Term Stability and High-Capacity Lithium-Ion Battery Anodes
- 2023Role of biodegradable dielectrics toward tool wear and dimensional accuracy in Cu-mixed die sinking EDM of Inconel 600 for sustainable machiningcitations
- 2023Role of biodegradable dielectrics toward tool wear and dimensional accuracy in Cu-mixed die sinking EDM of Inconel 600 for sustainable machining
- 2023Advancing Lithium-Ion Battery Anodes: Novel Sn and Hard Carbon Architectures for Long-Term Stability and High Capacity
- 2022Disrupting biofilm and eradicating bacteria by Ag-Fe3O4@MoS2 MNPs nanocomposite carrying enzyme and antibioticscitations
- 2013Epitaxial growth of cerium oxide thin films by pulsed laser depositioncitations
- 2013Effect of Diamond like Carbon Coating Thickness on Stainless Steel Substrate
- 2012 Fracture Toughness of Plasma Coated Zirconia(ZrO₂)
- 2012Mechanical Characterization of PECVD coated Materials by Indentation Techniques and Finite Element Simulation
Places of action
Organizations | Location | People |
---|
article
Wear-resistant and Adherent Nanodiamond Composite Thin Film for Durable and Sustainable Silicon Carbide Mechanical Seals
Abstract
In response to environmental concerns, there is a growing demand for durable and sustainable mechanical seals, particularly in high-risk industries like chemical, petroleum, and nuclear sectors. This work proposes augmenting the durability and sustainability of silicon carbide (SiC) ceramic seals with the application of a nanodiamond composite (NDC) film through coaxial arc plasma deposition (CAPD) in a vacuum atmosphere. The NDC coating, with a smooth surface roughness of Ra = 60 nm as substrate, demonstrated a thickness of 1.1 μm at a deposition rate of 2.6 μm/hr. NDC film has demonstrated exceptional mechanical and tribological characteristics, such as a hardness of 48.5 GPa, Young’s modulus of 496.7 GPa, plasticity index (H/E) of 0.098, and fracture toughness of H<sup>3</sup>/E<sup>2 </sup>= 0.46 GPa, respectively. These NDC films showcased commendable adhesion strength (> 60 N), negligible wear, and low friction (≤ 0.18) during dry sliding against a SiC counter material. Raman analysis has confirmed the nanocomposite structure of NDC film, emphasizing the role of highly energetic carbon ions in enhancing film adhesion by forming SiC intermetallic compounds at the interface through the diffusion of silicon atoms from the substrate into the films. The abundance of grain boundaries and rehybridization of carbon sp<sup>3</sup> to sp<sup>2</sup> bonding is perceived to improve tribological performance. CAPD excels in synthesizing long-life eco-friendly NDC coatings for durable and sustainable mechanical seals, featuring smooth surfaces, superior adhesion, outstanding hardness, and wear resistance, making them high potential candidates for various tribological applications.