People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bull, Steve
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Structural analysis of small-scale 3D printed composite tidal turbine blades
- 2022Investigation of anisotropy effects in glass fibre reinforced polymer composites on tensile and shear properties using full field strain measurement and finite element multi-scale techniquescitations
- 2022Unravelling the combined effect of cooling rate and microalloying on the microstructure and tribological performance of Cu50Zr50citations
- 2017Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealingcitations
Places of action
Organizations | Location | People |
---|
article
Unravelling the combined effect of cooling rate and microalloying on the microstructure and tribological performance of Cu50Zr50
Abstract
The combined effect of the cooling rate and microalloying has been studied from suction casted Cu50Zr50, Cu49.5Zr50Fe0.5 and Cu49Zr50Fe1 at. % rods of 2 mm and 4 mm diameter. For the 2 mm samples, ∼1000 K/s cooling rate, the microstructure mostly consists of B2 CuZr austenite and it is basically the same for all compositions. However, 0.5 at. % Fe addition promotes the formation of stress-induced B19’ martensite upon wear testing thus improving the wear resistance of the alloy. For the 4 mm samples, ∼250 K/s cooling rate, a multiphase intermetallic is predominant and when microalloyed with 0.5 at. % Fe, a relatively large volume fraction of as-cast B33 CuZr martensite is formed thus resulting in a reduction of the wear resistance. At high cooling rate the wear mechanism is predominantly delamination wear while for low cooling rate the large continuous grooves are indicative of abrasive wear.