Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sanchez, Roberto Martinez

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Unravelling the combined effect of cooling rate and microalloying on the microstructure and tribological performance of Cu50Zr501citations

Places of action

Chart of shared publication
Sanchez, Sergio Gonzalez
1 / 9 shared
Younes, Abdurauf
1 / 11 shared
Bull, Steve
1 / 4 shared
Izadi-Gonabadi, Hassan
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sanchez, Sergio Gonzalez
  • Younes, Abdurauf
  • Bull, Steve
  • Izadi-Gonabadi, Hassan
OrganizationsLocationPeople

article

Unravelling the combined effect of cooling rate and microalloying on the microstructure and tribological performance of Cu50Zr50

  • Sanchez, Sergio Gonzalez
  • Younes, Abdurauf
  • Bull, Steve
  • Sanchez, Roberto Martinez
  • Izadi-Gonabadi, Hassan
Abstract

The combined effect of the cooling rate and microalloying has been studied from suction casted Cu50Zr50, Cu49.5Zr50Fe0.5 and Cu49Zr50Fe1 at. % rods of 2 mm and 4 mm diameter. For the 2 mm samples, ∼1000 K/s cooling rate, the microstructure mostly consists of B2 CuZr austenite and it is basically the same for all compositions. However, 0.5 at. % Fe addition promotes the formation of stress-induced B19’ martensite upon wear testing thus improving the wear resistance of the alloy. For the 4 mm samples, ∼250 K/s cooling rate, a multiphase intermetallic is predominant and when microalloyed with 0.5 at. % Fe, a relatively large volume fraction of as-cast B33 CuZr martensite is formed thus resulting in a reduction of the wear resistance. At high cooling rate the wear mechanism is predominantly delamination wear while for low cooling rate the large continuous grooves are indicative of abrasive wear.

Topics
  • impedance spectroscopy
  • microstructure
  • wear resistance
  • intermetallic