Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meena, Durgesh K.

  • Google
  • 1
  • 7
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Reversal of favorable microstructure under plastic ploughing vs. interfacial shear induced wear in aged Co1.5CrFeNi1.5Ti0.5 high-entropy alloy16citations

Places of action

Chart of shared publication
Jain, Jayant
1 / 13 shared
Yeh, An Chou
1 / 6 shared
Chang, Yao Jen
1 / 6 shared
Jaishri, B.
1 / 1 shared
Neelakantan, Suresh
1 / 8 shared
Gosvami, Nitya Nand
1 / 7 shared
Kumar, Deepak
1 / 17 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Jain, Jayant
  • Yeh, An Chou
  • Chang, Yao Jen
  • Jaishri, B.
  • Neelakantan, Suresh
  • Gosvami, Nitya Nand
  • Kumar, Deepak
OrganizationsLocationPeople

article

Reversal of favorable microstructure under plastic ploughing vs. interfacial shear induced wear in aged Co1.5CrFeNi1.5Ti0.5 high-entropy alloy

  • Jain, Jayant
  • Yeh, An Chou
  • Chang, Yao Jen
  • Meena, Durgesh K.
  • Jaishri, B.
  • Neelakantan, Suresh
  • Gosvami, Nitya Nand
  • Kumar, Deepak
Abstract

<p>The microscopic tribological behaviour of the aged Co<sub>1.5</sub>CrFeNi<sub>1.5</sub>Ti<sub>0.5</sub> high entropy alloy (HEA) is examined using nanoindentation and atomic force microscopy (AFM). The effect of aging of the HEA viz. under-aged, peak-aged and over-aged conditions on the tribological properties is investigated under different loading conditions. In nanoindentation based scratch tests, wear is dominated by plastic ploughing and the peak-aged HEA shows the highest wear resistance, owing to its higher hardness. Interestingly, in low load AFM based experiments, in absence of plastic ploughing, the wear behaviour is reversed, i.e., the wear resistance of the peak-aged condition is lowest. Higher interfacial shear strength values, as determined using wearless AFM based sliding experiments, is attributed to the least wear resistance of the peak-aged condition. The observed tribological behaviour can potentially extend the use of HEAs for sliding components by controlling the optimum size and distribution of precipitates under different loading conditions.</p>

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • atomic force microscopy
  • wear resistance
  • strength
  • hardness
  • nanoindentation
  • precipitate
  • aging
  • interfacial
  • aging