Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ma, Dina

  • Google
  • 3
  • 11
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Cavitation erosion performance of CVD W/WC coatings20citations
  • 2019Cavitation erosion performance of CrAlYN/CrN nanoscale multilayer coatings deposited on Ti6Al4V by HIPIMS29citations
  • 2019Characterisation of rain erosion at ex-service turbofan blade leading edges8citations

Places of action

Chart of shared publication
Zhuk, Yuri N.
1 / 1 shared
Wood, Robert J. K.
2 / 93 shared
Harvey, Terence
1 / 12 shared
Wellman, Richard
3 / 3 shared
Arunprabhu, Sugumaran
1 / 1 shared
Purandare, Yashodhan
1 / 20 shared
Hovsepian, Papken
1 / 29 shared
Wood, Robert
1 / 6 shared
Ehiasarian, Arutiun
1 / 25 shared
Harvey, Terry
1 / 1 shared
Harvey, Terry J.
1 / 2 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Zhuk, Yuri N.
  • Wood, Robert J. K.
  • Harvey, Terence
  • Wellman, Richard
  • Arunprabhu, Sugumaran
  • Purandare, Yashodhan
  • Hovsepian, Papken
  • Wood, Robert
  • Ehiasarian, Arutiun
  • Harvey, Terry
  • Harvey, Terry J.
OrganizationsLocationPeople

article

Cavitation erosion performance of CVD W/WC coatings

  • Zhuk, Yuri N.
  • Ma, Dina
  • Wood, Robert J. K.
  • Harvey, Terence
  • Wellman, Richard
Abstract

In the aviation industry, water droplet erosion (WDE) takes place when an aircraft takes off on as wet runway or flies through rain or clouds. The leading edge of turbofan blades suffers from high-speed (300-400 m/s) impingements of water droplets, resulting in material removal that subsequently changes the leading edge profile and surface roughness. This affects the aerodynamic performance of turbofan blades, which eventually leads to efficiency drop of the aircraft engine and the need to replace and/or recondition the blades. A coating solution is targeted, such that, not only that it resists the high impact pressure but also inhibits stress wave reinforcements at the coating-substrate or interlayers interfaces. Past studies indicate similar damage mechanisms to WDE are generated by cavitation erosion (CE) during the early stages (incubation). Hence, CE is introduced in this study to predict the WDE performance. The coatings studied were nanostructured CVD tungsten/tungsten carbide coatings, either hierarchical or monotonic in design, on Ti6Al4V alloy grade 5 substrates. In-depth understanding on the coating damage mechanisms are established by correlating the coating performance with microstructure, crystallographic texture, interface design, coating deposition conditions and mechanical properties for the first time. A particular crystalline texture was found that gives optimum performance. The effect of the initial coating topography on the CE performance is effectively characterised by the surface parameters Ssk and Sku. The damage was found to initiate at the grain boundaries of the exposed surfaces. The hierarchical coating microstructure demonstrated enhancement in CE performance compared to a monotonic columnar grain structure. Additionally, it is found that the coating performance under dynamic compressive loadings could not be predicted by a simple H/E approaches. However, combining the H/E ratios with the factors of microstructure and crystal orientations might further facilitate the understanding of coating performances along with better understanding of the role of compressive residual stresses and stress waves propagation or reinforcement through coating depth and at the top surface of the coating.

Topics
  • impedance spectroscopy
  • surface
  • grain
  • carbide
  • texture
  • tungsten
  • chemical vapor deposition