People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saastamoinen, Ari
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Impact-abrasive and abrasive wear behavior of low carbon steels with a range of hardness-toughness propertiescitations
- 2020Impact-abrasive and abrasive wear behavior of low carbon steels with a range of hardness-toughness propertiescitations
- 2020Constitutive modelling of hot deformation behaviour of a CoCrFeMnNi high-entropy alloycitations
- 2019Annealing Effects on the Microstructure and Properties of Vanadium and Molybdenum Rich FCC High Entropy Alloycitations
- 2019Microstructure and Mechanical Properties of Nb and V Microalloyed TRIP-Assisted Steelscitations
- 2019Quenching and Partitioning of Multiphase Aluminum-Added Steelscitations
- 2019Direct-quenched and tempered low-C high-strength structural steel: The role of chemical composition on microstructure and mechanical propertiescitations
- 2018The effect of tempering temperature on microstructure, mechanical properties and bendability of direct-quenched low-alloy strip steelcitations
- 2018The effect of finish rolling temperature and tempering on the microstructure, mechanical properties and dislocation density of direct-quenched steelcitations
- 2017The effect of thermomechanical treatment and tempering on the subsurface microstructure and bendability of direct-quenched low-carbon strip steelcitations
- 2015Fast Salt Bath Heat Treatment for a Bainitic/Martensitic Low-Carbon Low-Alloyed Steelcitations
Places of action
Organizations | Location | People |
---|
article
Impact-abrasive and abrasive wear behavior of low carbon steels with a range of hardness-toughness properties
Abstract
This work investigates steels for mining wear applications involving abrasive and impact-abrasive conditions. The study comprises four low carbon steels with a range of hardness-toughness combinations: a commercial grade martensitic steel, the same steel heat treated to lower bainite, a commercial TRIP steel (tensile strength grade 700 MPa), and a quenching-partitioning (QP) steel. The <br/>steels were subjected to crushing pin-on-disc (CPOD) and slurry-pot wear tests, offering reasonably high-stress abrasive and impact-abrasive conditions, respectively. The results showed that the best performer in both studied wear conditions is the martensitic steel due to its higher initial hardness. Nevertheless, the performance benefit of this steel was of lesser magnitude in the slurry-pot than in the CPOD tests. On the other hand, the TRIP steel showed poor ranking in the CPOD tests but outperformed the QP and lower bainite steels in the slurry-pot tests. Detailed surface and subsurface wear damage investigations were conducted to study the wear responses of the microstructural constituents of the steels to explain their wear behavior in different wear conditions.