People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Looijmans, Stan F. S. P.
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Vezel-geïnduceerde kristallisatie in rekstromingen ; Fiber-induced crystallization in elongational flowscitations
- 2024Fiber-induced crystallization in elongational flowscitations
- 2023Deformation kinetics of single-fiber polypropylene composites:Adhesion improvement at the expense of toughness
- 2023Deformation kinetics of single-fiber polypropylene composites
- 2023Shear-Induced Structure Formation in MAH-g-PP Compatibilized Polypropylenescitations
- 2022An experimentally validated model for quiescent multiphase primary and secondary crystallization phenomena in PP with low content of ethylene comonomercitations
- 2022An experimentally validated model for quiescent multiphase primary and secondary crystallization phenomena in PP with low content of ethylene comonomercitations
- 2022The Role of Molar Mass in Achieving Isotropy and Inter-Layer Strength in Mat-Ex Printed Polylactic Acidcitations
- 2021Shaping and properties of thermoplastic scaffolds in tissue regeneration: The effect of thermal history on polymer crystallization, surface characteristics and cell fatecitations
- 2020Numerical analysis of the crystallization kinetics in SLScitations
- 2020Polarization modulated infrared spectroscopy:A pragmatic tool for polymer science and engineeringcitations
- 2020Polarization modulated infrared spectroscopycitations
- 2019Hydrostatic stress as indicator for wear initiation in polymer tribologycitations
- 2019Temperature dependent two-body abrasive wear of polycarbonate surfacescitations
- 2018Contact mechanics of high-density polyethylene: Effect of pre-stretch on the frictional response and the onset of wearcitations
- 2018Contact mechanics of polyolefins: effect of pre-stretch on the frictional response and the onset of wear
Places of action
Organizations | Location | People |
---|
article
Temperature dependent two-body abrasive wear of polycarbonate surfaces
Abstract
During the lifetime of polycarbonate surfaces, which for example are used as helmets or protective eye visors, friction and abrasive wear may result from scratching or sliding cycles. Previous research showed that it is essential to understand the intrinsic mechanical response of the polymer in order to further investigate its frictional and wear response. The Eindhoven Glassy Polymer (EGP) model is a 3D elasto-viscoplastic constitutive model, developed to describe the intrinsic mechanical response of polymer glasses. Temperature is a crucial player in the intrinsic response and also plays a pivotal role in the resulting frictional response as tested via a single-asperity scratch test. In the current study, a finite element model is used to investigate the effect of temperature on the frictional response of polycarbonate and detect the onset of crack formation and wear initiation. The results show that temperature has a strong effect on the intrinsic response of the polymer, i.e. drop in yield stress and altered strain-hardening and strain-softening response. However, it has a minute effect on its frictional response, the simulation model is able to capture this response quantitively. In addition, cracks are observed experimentally at elevated temperature. A critical positive hydrostatic stress value is selected as a criterion for crack formation. It has been shown that at elevated temperatures the value of the maximum positive hydrostatic stress increases due to the altered intrinsic response of the material on one hand, and the increased adhesion between the tip and the polymer on the other hand.