People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schipper, Dirk J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Characterization of yield criteria for zinc coated steel sheets using nano-indentation with knoop indentercitations
- 2020Analytical, numerical and experimental studies on ploughing behaviour in soft metallic coatingscitations
- 2019Characterization of interfacial shear strength and its effect on ploughing behaviour in single-asperity slidingcitations
- 2019Modelling of ploughing in a single-asperity sliding contact using material point methodcitations
- 2012Investigating the influence of sand particle properties on abrasive wear behaviourcitations
- 2012Effect of temperature on friction and wear behavior of CuO-zirconia compositescitations
- 2011High-Temperature Tribological and Self-Lubricating Behavior of Copper Oxide-Doped Y-TZP Composite Sliding Against Aluminacitations
- 2009Dry-sliding self-lubricating ceramics: CuO doped 3Y-TZPcitations
- 2007Effect of Microstructure on the Tribological and Mechanical Properties of CuO-Doped 3Y-TZP Ceramicscitations
- 2004Friction behaviour of solid oxide lubricants as second phase in alpha-Al2O3 and stabilised ZrO2 compositescitations
Places of action
Organizations | Location | People |
---|
article
Characterization of interfacial shear strength and its effect on ploughing behaviour in single-asperity sliding
Abstract
<p>The shear strength at the interface contributes to the overall friction force experienced by the contacting bodies sliding against each other. In this article, an experimental technique to characterize the shear strength at the interface of metallic bodies in sliding contact has been developed. The boundary layers formed at interface in a lubricating contact have been varied by using two different types of lubricants in combination with both zinc coated and uncoated steel sheets. The empirical relations between the experimental parameters such as contact pressure and sliding velocity and the interfacial shear strength have been expressed by fitting the experimental results. These expressions have been incorporated in the Material Point Method (MPM) based ploughing model. The coefficient of friction and ploughing depth obtained from the numerical simulations have been validated relative to the experimental results with a good agreement for both lubricated and unlubricated substrates, different loads and spherical indenter sizes. Furthermore, the interfacial shear strength has been varied in the MPM-based ploughing model and ploughing experiments to study the contribution of interfacial shear strength to overall friction, deformation and wear.</p>