Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Poapongsakorn, P.

  • Google
  • 2
  • 11
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Improvement of the tribological behaviour of palm biodiesel via partial hydrogenation of unsaturated fatty acid methyl esters37citations
  • 2018The tribology of fructose derived biofuels for DISI gasoline engines6citations

Places of action

Chart of shared publication
Lapuerta, M.
1 / 1 shared
Dearn, K. D.
2 / 11 shared
Sukjit, E.
1 / 1 shared
Tongroon, M.
1 / 1 shared
Chollacoop, N.
1 / 1 shared
Yoshimura, Y.
1 / 2 shared
Hu, Enzhu
1 / 1 shared
Xu, Yufu
1 / 1 shared
Hu, Xianguo
1 / 1 shared
Moorcroft, H.
1 / 1 shared
Sukjit, Ekarong
1 / 1 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Lapuerta, M.
  • Dearn, K. D.
  • Sukjit, E.
  • Tongroon, M.
  • Chollacoop, N.
  • Yoshimura, Y.
  • Hu, Enzhu
  • Xu, Yufu
  • Hu, Xianguo
  • Moorcroft, H.
  • Sukjit, Ekarong
OrganizationsLocationPeople

article

Improvement of the tribological behaviour of palm biodiesel via partial hydrogenation of unsaturated fatty acid methyl esters

  • Lapuerta, M.
  • Dearn, K. D.
  • Sukjit, E.
  • Tongroon, M.
  • Chollacoop, N.
  • Poapongsakorn, P.
  • Yoshimura, Y.
Abstract

<p>Partial hydrogenation of unsaturated fatty acid methyl esters, the so-called H-FAME, has been developed, particularly for application in warm climates, to improve the oxidation stability of biodiesel. During the H-FAME process, polyunsaturated ester molecules, which are a primary cause of biodiesel induced oxidation, can be reduced. In this paper, the lubrication properties and mechanisms have been studied when high quality biodiesel from palm was upgraded to H-FAME. Lubricity tests were performed using a high-frequency reciprocating rig (HFRR). After the lubricity tests, wear scar and deposits on the tested specimens were analyzed using a scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectrometry (EDS). It was found that the partial hydrogenation upgrading process reduced polyunsaturated molecules and also transformed cis-monounsaturated molecules (C18:1 cis) into trans-monounsaturated molecules (C18:1 trans). This increased the stability of the lubricating film when C18:1 trans molecules were present, and so improved the lubricity of the H-FAME. An observation of wear damage suggested that the H-FAME was able to form dense and stable tribo-films on the steel test surfaces, protecting them from abrasive damage such as scoring and scratching. As a result of the reduction of polyunsaturated ester molecules, the lubricity of the H-FAME was less sensitive to the changes in humidity. Moreover, there was evidence of a reduction in both corrosive wear and large agglomerations of deposits for the H-FAME upgraded palm biodiesel due to its higher oxidation stability.</p>

Topics
  • surface
  • scanning electron microscopy
  • laser emission spectroscopy
  • steel
  • Energy-dispersive X-ray spectroscopy
  • ester
  • spectrometry
  • chemical ionisation