People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mishra, Tanmaya
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Modeling boundary friction of coated sheets in sheet metal formingcitations
- 2021Mixed lubrication friction model including surface texture effects for sheet metal formingcitations
- 2020Characterization of yield criteria for zinc coated steel sheets using nano-indentation with knoop indentercitations
- 2020Semi-analytical contact model to determine the flattening behavior of coated sheets under normal loadcitations
- 2020Analytical, numerical and experimental studies on ploughing behaviour in soft metallic coatingscitations
- 2019Characterization of interfacial shear strength and its effect on ploughing behaviour in single-asperity slidingcitations
- 2019Modelling of ploughing in a single-asperity sliding contact using material point methodcitations
Places of action
Organizations | Location | People |
---|
article
Modelling of ploughing in a single-asperity sliding contact using material point method
Abstract
<p>Loading and sliding of a rigid asperity over a substrate results in friction due to shearing of the contact interface and deformation of the substrate. In this article, we introduce the Material Point Method (MPM) based numerical tool to study friction during ploughing of a soft-smooth metallic sheet by a rigid-spherical asperity. The numerical model incorporates a dislocation based physical model for substrate material deformation and interfacial shear strength at the asperity- substrate contact. Initially, the numerical output has been validated using results obtained from the analytical models available in the literature for single-asperity sliding. Finally, the depth of the ploughed wear profile and the overall coefficient of friction obtained from the numerical simulations has been compared with the data obtained from the ploughing experiments and are shown to be in good agreement. Hence, the developed MPM model can be established as a robust tool to model ploughing in a single-asperity sliding contact.</p>