People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sassatelli, P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Pre-treatment of Selective Laser Melting (SLM) surfaces for thermal spray coatingcitations
- 2019Tribological behavior of WC-Co HVAF-sprayed composite coatings modified by nano-sized TiC additioncitations
- 2019Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatingscitations
- 2017Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatingscitations
- 2015Tribological properties of hard metal coatings sprayed by high velocity air fuel process
- 2015Tribology of HVOF- and HVAF-sprayed WC-10Co4Cr hardmetal coatingscitations
Places of action
Organizations | Location | People |
---|
article
Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatings
Abstract
Thermally sprayed tungsten carbide (WC) and chromium carbide (Cr3C2) based hard metal coatings are commonly applied on component surfaces as corrosion and wear resistant layers. Typically, WC-Co/Ni with optional Cr addition and Cr3C2-25NiCr powders are sprayed with high velocity oxy-fuel (HVOF) or high velocity air-fuel (HVAF) processes. Due to the poor oxidation resistance of the WC particles, Cr3C2-25NiCr composition is typically selected for high temperature environments, up to 800–900 °C. In this study, two distinct Cr3C2-based compositions of Cr3C2-50NiCrMoNb and Cr3C2-37WC-18NiCoCr were selected as interesting alternatives to conventional Cr3C2-25NiCr. Sliding wear behavior of the coatings sprayed with HVOF and HVAF processes were tested with a ball-on-disk configuration against an Al2O3ball at room temperature and at 700 °C. It was found that both alternative materials had comparable coefficients of friction with the Cr3C2-25NiCr coatings. The Cr3C2-37WC-18NiCoCr coatings provided improved wear resistance at room temperature conditions, but at 700 °C the wear rate was increased to the level of the Cr3C2-50NiCrMoNb coatings. Cr3C2-25NiCr coatings experienced the lowest wear rates at elevated temperatures, which was even lower than at room temperature.