People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sharp, Joanne
University of Huddersfield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Investigation of the microstructure of He+ ion-irradiated TiBe12 and CrBe12 using ex-situ transmission electron microscopycitations
- 2020Improving the oscillating wear response of cold sprayed Ti-6Al-4V coatings through a heat treatmentcitations
- 2020Ramification of thermal expansion mismatch and phase transformation in TiC-particulate/SiC-matrix ceramic compositecitations
- 2020The Lubricating Properties of Spark Plasma Sintered (SPS) Ti3SiC2 MAX Phase Compound and Compositecitations
- 2019Exploiting thermal strain to achieve an in-situ magnetically graded materialcitations
- 2019Microstructural evolution and wear mechanism of Ti3AlC2 – Ti2AlC dual MAX phase composite consolidated by spark plasma sintering (SPS)citations
- 2019Influence of solidification cell structure on the martensitic transformation in additively manufactured steelscitations
- 2017Spinel–rock salt transformation in LiCoMnO4−δcitations
- 2017Direct observation of precipitation along twin boundaries and dissolution in a magnesium alloy annealing at high temperaturecitations
- 2017Tribological response and characterization of Mo–W doped DLC coatingcitations
- 2016On the use of cryomilling and spark plasma sintering to achieve high strength in a magnesium alloycitations
- 2016Characterisation of L21-ordered Ni2TiAl precipitates in Fe-Mn maraging steelscitations
- 2016Spinel-rock salt transformation in LiCoMnO4-δcitations
- 2016Microstructural evolution of Mn-based maraging steels and their influences on mechanical propertiescitations
- 2015New compositional design for creating tough metallic glass composites with excellent work hardeningcitations
- 2015Cross sectional TEM analysis of duplex HIPIMS and DC magnetron sputtered Mo and W doped carbon coatings
- 20123-dimensional imaging of dislocation microstructures by electron beams
- 2011High-angle triple-axis specimen holder for three-dimensional diffraction contrast imaging in transmission electron microscopycitations
Places of action
Organizations | Location | People |
---|
article
Tribological response and characterization of Mo–W doped DLC coating
Abstract
<p>DLC coatings and nanostructured carbon coating have been successfully used to prevent against wear and corrosion. Their thermal stability and internal stress have been improved by the addition of transition metals. This work characterizes the surface morphology against two different materials and growth mechanisms of an hydrogen-free carbon coating doped with a W–Mo. The wear resistance is evaluated under dry and room temperature by a set of pin on disc tests at different load and against two different counterfaces, Al<sub>2</sub>O<sub>3</sub> and stainless steel 440 C. The as-deposited and worn surfaces were characterized by electron microscopy techniques, interferometry, nanoindentation and Raman spectroscopy. The as-deposited coating presented a hardness of 14 GPa and an elastic modulus of 179 GPa with a dense surface finished and a columnar structure. The average friction coefficient was between 0.15 and 0.25, with almost no wear on the counterfaces. The W–Mo doped DLC coating showed high resistance against wear with wear rates between 3.79×10<sup>−8</sup> mm<sup>3</sup> N<sup>−1</sup> m<sup>−1</sup> and 2.65×10<sup>−7</sup> mm<sup>3</sup> N<sup>−1</sup> m<sup>−1</sup> due to its Mo–W carbide content in the amorphous matrix. A major presence of carbides prevent from adhesion to the counterface by reducing the number of dangling bonds.</p>