People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Danielsen, Hilmar Kjartansson
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Microstructural Evolution During Welding of High Si Solution-Strengthened Ferritic Ductile Cast Iron Using Different Filler Metalscitations
- 2023New White Etch Cracking resistant martensitic stainless steel for bearing applications by high temperature solution nitridingcitations
- 2023Understanding the challenges during repair welding of EN GJS-500-14 spheroidal cast iron for wind industry
- 2023Thermomechanical modeling and experimental study of a multi-layer cast iron repair welding for weld-induced crack predictioncitations
- 2022Effect of manufacturing defects on fatigue life of high strength steel bolts for wind turbinescitations
- 2021Residual strain-stress in manganese steel railway-crossing determined by synchrotron and laboratory X-raycitations
- 2021Microstructural characterization of white etching cracks in bearings after long-term operation in wind turbinescitations
- 2020Multi-axial Fatigue of Head-Hardened Pearlitic and Austenitic Manganese Railway Steels: A Comparative Studycitations
- 20192D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossingcitations
- 2019Crack formation within a Hadfield manganese steel crossing nosecitations
- 20182D and 3D characterization of rolling contact fatigue cracks in a manganese steel crossing wing rail
- 2017Synchrotron X-ray measurement of residual strain within the nose of a worn manganese steel railway crossingcitations
- 2017Multiscale characterization of White Etching Cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rigcitations
- 2017Analysis of bearing steel exposed to rolling contact fatiguecitations
- 20163D characterization of rolling contact fatigue crack networkscitations
- 2016Review of Z phase precipitation in 9–12 wt-%Cr steelscitations
- 2014Grinding induced martensite on the surface of rails
- 2014A TEM Study on the Ti-Alloyed Grey Iron
- 2014Atomic Resolution Microscopy of Nitrides in Steel
- 2014New amorphous interface for precipitate nitrides in steelcitations
- 2013Investigation on Long-term Creep Rupture Properties and Microstructure Stability of Fe-Ni based Alloy Ni-23Cr-7W at 700°Ccitations
- 2013Kinetics of Z-Phase Precipitation in 9 to 12 pct Cr Steelscitations
- 2012Atomic resolution investigations of phase transformation from TaN to CrTaN in a steel matrix
- 2010Microstructural investigation of the oxide formed on TP 347H FG during long-term steam oxidationcitations
- 2010On the role of Nb in Z-phase formation in a 12% Cr steelcitations
- 2010On the role of Nb in Z-phase formation in a 12% Cr steelcitations
- 2010Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steelcitations
- 2009On the nucleation and dissolution process of Z-phase Cr(V,Nb)N in martensitic 12%Cr steelscitations
- 2008A study on Z-phase nucleation in martensitic chromium steelscitations
- 2008Thermodynamic and kinetic modelling: creep resistant materialscitations
- 2007A thermodynamic model of the Z-phase Cr(V, Nb)Ncitations
- 2006Behaviour of Z phase in 9–12%Cr steels
Places of action
Organizations | Location | People |
---|
article
Multiscale characterization of White Etching Cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rig
Abstract
A common cause for premature bearing failures in wind turbine gearboxes are the so-called White Etching Cracks (WEC). These undirected, three-dimensional cracks are bordered by regions of altered microstructure and ultimately lead to a cracking or spalling of the raceway. An accelerated WEC test was carried out on a FE8 test rig using cylindrical roller thrust bearings made of martensitic 100Cr6 steel. The resulting WECs were investigated with several characterisation techniques. Ultrasonic measurements showed the WEC were mainly located in the region of the overrolled surface in which negative slip occurs, which agrees with hypotheses based on an energetic approach for a prognosis. SEM orientation contrast imaging of the area around WEC revealed an inhomogeneous structure with varied grain sizes and a large amount of defects. Microstructure characterization around the WEA using EBSD showed significant grain refinement. Atom probe tomography showed the microstructure in the undamaged zone has a plate-like martensitic structure with carbides, while no carbides were detected in the WEA where the microstructure consisted of equiaxed 10 nm grains. A three dimensional characterisation of WEC network was successfully demonstrated with X-ray computerized tomography, showing crack interaction with unidentified inclusion-like particles.