Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Markine, Valeri

  • Google
  • 3
  • 6
  • 63

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017Analysis of the effect of repair welding/grinding on the performance of railway crossings using field measurements and finite element modeling8citations
  • 2016Numerical analysis of rail surface crack propagation under cyclic rolling-sliding contact loads3citations
  • 2016Numerical procedure for fatigue life prediction for railway turnout crossings using explicit finite element approach52citations

Places of action

Chart of shared publication
Shevtsov, Iy
1 / 1 shared
Xin, Lizuo
1 / 1 shared
Ma, Y.
1 / 30 shared
Mashal, Aa
1 / 1 shared
Shevtsov, I. Y.
1 / 1 shared
Xin, L.
1 / 2 shared
Chart of publication period
2017
2016

Co-Authors (by relevance)

  • Shevtsov, Iy
  • Xin, Lizuo
  • Ma, Y.
  • Mashal, Aa
  • Shevtsov, I. Y.
  • Xin, L.
OrganizationsLocationPeople

article

Numerical procedure for fatigue life prediction for railway turnout crossings using explicit finite element approach

  • Shevtsov, I. Y.
  • Xin, L.
  • Markine, Valeri
Abstract

<p>In this paper a numerical procedure for analysis of rolling contact fatigue crack initiation and fatigue life prediction for the railway turnout crossing is presented. To analyse wheel–rail interaction, a three-dimensional explicit finite element (FE) model of a wheelset passing a turnout crossing is developed to obtain the dynamic responses such as the contact forces, displacements and accelerations as well as the stresses and strain in the crossing nose. The material model accounting for elastic–plastic isotropic and kinematic hardening effects in rails is adopted. The fatigue life of the rails is defined as the time to rolling contact fatigue crack initiation. In predicting the fatigue life Jiang and Sehitoglu model is used, which is based on the critical plane approach. Using the FE simulation results the ten critical locations on the crossing nose susceptible to crack initiation are determined first. Then, using the fatigue model the critical planes in these locations are obtained and the number of cycles to fatigue crack initiation is calculated for each location, based on which the most decisive location and the crossing life is determined. The results of the numerical simulations are presented and discussed.</p>

Topics
  • impedance spectroscopy
  • polymer
  • simulation
  • crack
  • fatigue
  • isotropic