Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Steenbergen, Michael

  • Google
  • 4
  • 1
  • 123

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021On the genesis of squat-type defects on rails10citations
  • 2018Susceptibility of pearlitic rail grades to thermal white etching layer formationcitations
  • 2017Rolling contact fatigue42citations
  • 2016Rolling contact fatigue in relation to rail grinding71citations

Places of action

Chart of shared publication
Messaadi, Maha
1 / 3 shared
Chart of publication period
2021
2018
2017
2016

Co-Authors (by relevance)

  • Messaadi, Maha
OrganizationsLocationPeople

article

Rolling contact fatigue in relation to rail grinding

  • Steenbergen, Michael
Abstract

Spalling defects of a periodic nature are sometimes observed on heat-treated pearlitic steel rails. Defect properties suggest a relationship between maintenance grinding on a regular basis and the initiation of rolling contact fatigue (RCF). In this work, the effects of maintenance grinding are investigated experimentally for both standard and heat-treated pearlitic rails. Results show essentially different behaviour for both steels. On standard grades, friction-induced martensite (FIM) generated during grinding delaminates when in service. However, grinding induces severe top-layer deformation which coincides with that induced by train operation, thus yielding 'pre-fatigue' of the rail. On heat-treated grades, portions of FIM accumulated at groove edges during grinding are pressed into the deeper pearlitic matrix in combination with severe plastic deformation under tangential wheel-rail contact stresses. That process results in severe and extensive crack initiation. According to quantitative test results reported in the literature, this initial condition yields a reduction of the normal RCF life by roughly a factor nine, which is in accordance with both observations in the field and in the literature on rail spalling defects. ; Railway Engineering

Topics
  • impedance spectroscopy
  • polymer
  • grinding
  • crack
  • steel
  • fatigue
  • etching