People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ojala, Niko
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2021Comparison of various high-stress wear conditions and wear performance of martensitic steelscitations
- 2020Adaptation of Laboratory tests for the assessment of wear resistance of drill-bit inserts for rotarypercussive drilling of hard rockscitations
- 2019Comparison of laboratory wear test results with the in-service performance of cutting edges of loader bucketscitations
- 2019Comparison of various high-stress wear conditions and wear performance of martensitic steelscitations
- 2018Wear performance of quenched wear resistant steels in abrasive slurry erosioncitations
- 2018The role of niobium in improving toughness and corrosion resistance of high speed steel laser hardfacingscitations
- 2018High Speed Slurry-Pot Erosion Wear Testing of HVOF and HVAF Sprayed Hardmetal Coatings
- 2018Slurry and dry particle erosion wear properties of WC-10Co4Cr and Cr3C2-25NiCr hardmetal coatings deposited by HVOF and HVAF spray processes
- 2018Erosive-abrasive wear behavior of carbide-free bainitic and boron steels compared in simulated field conditionscitations
- 2018Comparison of impact-abrasive wear characteristics and performance of direct quenched (DQ) and direct quenched and partitioned (DQ&P) steelscitations
- 2017Effect of finish rolling and quench stop temperatures on impact-abrasive wear resistance of 0.35 % carbon direct-quenched steel
- 2017Comparison of laboratory wear test results with the in-service performance of cutting edges of loader bucketscitations
- 2017Cavitation erosion, slurry erosion and solid particle erosion performance of metal matrix composite (MMC) coatings sprayed with modern high velocity thermal spray processes
- 2017Application Oriented Wear Testing of Wear Resistant Steels in Mining Industry
- 2016Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steelscitations
- 2016Application oriented wear testing of wear resistant steels in mining industry
- 2016Comparison of laboratory wear test results with the in-service performance of cutting edges of loader buckets
- 2016Wear performance of quenched wear resistant steels in abrasive slurry erosioncitations
- 2016Erosive and abrasive wear performance of carbide free bainitic steels – comparison of field and laboratory experimentscitations
- 2016The role of niobium in improving toughness and corrosion resistance of high speed steel laser hardfacingscitations
- 2016The effects of microstructure on erosive-abrasive wear behavior of carbide free bainitic and boron steels
- 2016Processing and Wear Testing of Novel High-Hardness Wear-Resistant Steel
- 2014Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steelscitations
- 2014Versatile erosion wear testing with the high speed slurry-pot
Places of action
Organizations | Location | People |
---|
article
Wear performance of quenched wear resistant steels in abrasive slurry erosion
Abstract
Three commercially available quenched wear resistant steel grades were compared with a structural steel and four elastomer materials to reveal the differences in their behavior in slurry erosion conditions and to find the best solutions for demanding applications. A slurry-pot tester, allowing simulation of various wear conditions with different minerals, particle sizes (up to 10 mm), abrasive concentrations, and sample angles were used to simulate different industrial slurry applications. In this study, granite and quartz with concentrations of 9 and 33 wt% were used as abrasives in tests conducted at 45° and 90° sample angles. The performance of the studied steels was evaluated with respect to their material properties such as hardness and microstructure. Furthermore, the cross-sections and wear surfaces of the test samples were analyzed to reveal the possible differences in the mechanical behavior of the materials during slurry erosion. The wear surface analyses show that abrasion is the dominating wear mechanism already for the smallest particle size of 0.1/0.6 mm. In low-stress abrasive slurry erosion with the smallest particles, the elastomers showed better wear resistance than the steels, whereas in demanding high-stress abrasive slurry erosion conditions the quenched wear resistant steels can well compete with elastomers in wear resistance. The relative wear performance of the steels increased with increasing abrasive size, while for the elastomers it decreased.